Do you want to publish a course? Click here

Local distinguishability of quantum states in bipartite systems

115   0   0.0 ( 0 )
 Added by Xiaoqian Zhang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this article, we show a sufficient and necessary condition for locally distinguishable bipartite states via one-way local operations and classical communication (LOCC). With this condition, we present some minimal structures of one-way LOCC indistinguishable quantum state sets. As long as an indistinguishable subset exists in a state set, the set is not distinguishable. We also list several distinguishable sets as instances.



rate research

Read More

145 - Xiaoqian Zhang 2017
In this paper, we mainly study the local distinguishable multipartite quantum states by local operations and classical communication (LOCC) in $m_1otimes m_2otimesldotsotimes m_n$ , where the quantum system $m_1$ belongs to Alice, $m_2$ belongs to Bob, ldots and $m_n$ belongs to Susan. We first present the pure tripartite distinguishable orthogonal quantum states by LOCC in $m_1otimes m_2otimes m_3$. With the conclusion in $m_1otimes m_2otimes m_3$, we prove distinguishability or indistinguishability of some quantum states. At last, we give the $n$-party distinguishable quantum states in $m_1otimes m_2otimescdotsotimes m_n$. Our study further reveals quantum nonlocality in multipartite high-dimensional.
The nonlocal properties of arbitrary dimensional bipartite quantum systems are investigated. A complete set of invariants under local unitary transformations is presented. These invariants give rise to both sufficient and necessary conditions for the equivalence of quantum states under local unitary transformations: two density matrices are locally equivalent if and only if all these invariants have equal values.
A quantum ensemble ${(p_x, rho_x)}$ is a set of quantum states each occurring randomly with a given probability. Quantum ensembles are necessary to describe situations with incomplete a priori information, such as the output of a stochastic quantum channel (generalized measurement), and play a central role in quantum communication. In this paper, we propose measures of distance and fidelity between two quantum ensembles. We consider two approaches: the first one is based on the ability to mimic one ensemble given the other one as a resource and is closely related to the Monge-Kantorovich optimal transportation problem, while the second one uses the idea of extended-Hilbert-space (EHS) representations which introduce auxiliary pointer (or flag) states. Both types of measures enjoy a number of desirable properties. The Kantorovich measures, albeit monotonic under deterministic quantum operations, are not monotonic under generalized measurements. In contrast, the EHS measures are. We present operational interpretations for both types of measures. We also show that the EHS fidelity between ensembles provides a novel interpretation of the fidelity between mixed states--the latter is equal to the maximum of the fidelity between all pure-state ensembles whose averages are equal to the mixed states being compared. We finally use the new measures to define distance and fidelity for stochastic quantum channels and positive operator-valued measures (POVMs). These quantities may be useful in the context of tomography of stochastic quantum channels and quantum detectors.
Unambiguous state discrimination of two mixed bipartite states via local operations and classical communications (LOCC) is studied and compared with the result of a scheme realized via global measurement. We show that the success probability of a global scheme for mixed-state discrimination can be achieved perfectly by the local scheme. In addition, we simulate this discrimination via a pair of pure entangled bipartite states. This simulation is perfect for local rather than global schemes due to the existence of entanglement and global coherence in the pure states. We also prove that LOCC protocol and the sequential state discrimination (SSD) can be interpreted in a unified view. We then hybridize the LOCC protocol with three protocols (SSD, reproducing and broadcasting) relying on classical communications. Such hybridizations extend the gaps between the optimal success probability of global and local schemes, which can be eliminated only for the SSD rather than the other two protocols.
We consider the distinguishability of Gaussian states from the view point of continuous-variable quantum cryptography using post-selection. Specifically, we use the probability of error to distinguish between two pure coherent (squeezed) states and two particular mixed symmetric coherent (squeezed) states where each mixed state is an incoherent mixture of two pure coherent (squeezed) states with equal and opposite displacements in the conjugate quadrature. We show that the two mixed symmetric Gaussian states (where the various components have the same real part) never give an eavesdropper more information than the two pure Gaussian states. Furthermore, when considering the distinguishability of squeezed states, we show that varying the amount of squeezing leads to a squeezing and anti-squeezing of the net information rates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا