Do you want to publish a course? Click here

Bethe states of the trigonometric SU(3) spin chain with generic open boundaries

134   0   0.0 ( 0 )
 Added by Jun-Peng Cao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU(3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T-Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.



rate research

Read More

Based on the inhomogeneous T-Q relation and the associated Bethe Ansatz equations obtained via the off-diagonal Bethe Ansatz, we construct the Bethe-type eigenstates of the SU(2)-invariant spin-s chain with generic non-diagonal boundaries by employing certain orthogonal basis of the Hilbert space.
The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the $SU_q(3)$ R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities among the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T-Q relations and Bethe ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the $SU_q(n)$ algebra.
The graded off-diagonal Bethe ansatz method is proposed to study supersymmetric quantum integrable models (i.e., quantum integrable models associated with superalgebras). As an example, the exact solutions of the $SU(2|2)$ vertex model with both periodic and generic open boundary conditions are constructed. By generalizing the fusion techniques to the supersymmetric case, a closed set of operator product identities about the transfer matrices are derived, which allows us to give the eigenvalues in terms of homogeneous or inhomogeneous $T-Q$ relations. The method and results provided in this paper can be generalized to other high rank supersymmetric quantum integrable models.
We solve the longstanding problem to define a functional characterization of the spectrum of the transfer matrix associated to the most general spin-1/2 representations of the 6-vertex reflection algebra for general inhomogeneous chains. The corresponding homogeneous limit reproduces the spectrum of the Hamiltonian of the spin-1/2 open XXZ and XXX quantum chains with the most general integrable boundaries. The spectrum is characterized by a second order finite difference functional equation of Baxter type with an inhomogeneous term which vanishes only for some special but yet interesting non-diagonal boundary conditions. This functional equation is shown to be equivalent to the known separation of variable (SOV) representation hence proving that it defines a complete characterization of the transfer matrix spectrum. The polynomial character of the Q-function allows us then to show that a finite system of equations of generalized Bethe type can be similarly used to describe the complete transfer matrix spectrum.
The off-diagonal Bethe ansatz method is generalized to the integrable model associated with the $sp(4)$ (or $C_2$) Lie algebra. By using the fusion technique, we obtain the complete operator product identities among the fused transfer matrices. These relations, together with some asymptotic behaviors and values of the transfer matrices at certain points, enable us to determine the eigenvalues of the transfer matrices completely. For the periodic boundary condition case, we recover the same $T-Q$ relations obtained via conventional Bethe ansatz methods previously, while for the off-diagonal boundary condition case, the eigenvalues are given in terms of inhomogeneous $T-Q$ relations, which could not be obtained by the conventional Bethe ansatz methods. The method developed in this paper can be directly generalized to generic $sp(2n)$ (i.e., $C_n$) integrable model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا