$z^circ$-ideals in intermediate rings of ordered field valued continuous functions


Abstract in English

A proper ideal $I$ in a commutative ring with unity is called a $z^circ$-ideal if for each $a$ in $I$, the intersection of all minimal prime ideals in $R$ which contain $a$ is contained in $I$. For any totally ordered field $F$ and a completely $F$-regular topological space $X$, let $C(X,F)$ be the ring of all $F$-valued continuous functions on $X$ and $B(X,F)$ the aggregate of all those functions which are bounded over $X$. An explicit formula for all the $z^circ$-ideals in $A(X,F)$ in terms of ideals of closed sets in $X$ is given. It turns out that an intermediate ring $A(X,F) eq C(X,F)$ is never regular in the sense of Von-Neumann. This property further characterizes $C(X,F)$ amongst the intermediate rings within the class of $P_F$-spaces $X$. It is also realized that $X$ is an almost $P_F$-space if and only if each maximal ideal in $C(X,F)$ is $z^circ$-ideal. Incidentally this property also characterizes $C(X,F)$ amongst the intermediate rings within the family of almost $P_F$-spaces.

Download