No Arabic abstract
In this work, we study the phenomena of quantum entanglement by computing de Sitter entanglement entropy from von Neumann measure. For this purpose we consider a bipartite quantum field theoretic setup in presence of axion originating from ${bf Type~ II~B}$ string theory. We consider the initial vacuum to be CPT invariant non-adiabatic $alpha$ vacua state under ${bf SO(1,4)}$ ismometry, which is characterized by a real one-parameter family. To implement this technique we use a ${bf S^2}$ which divide the de Sitter into two exterior and interior sub-regions. First, we derive the wave function of axion in an open chart for $alpha$ vacua by applying Bogoliubov transformation on the solution for Bunch-Davies vacuum state. Further, we quantify the density matrix by tracing over the contribution from the exterior region. Using this result we derive entanglement entropy, R$acute{e}$nyi entropy and explain the long-range quantum effects in primordial cosmological correlations. We also provide a comparison between the results obtained from Bunch-Davies vacuum and the generalized $alpha$ vacua, which implies that the amount of quantum entanglement and the long-range effects are larger for non zero value of the parameter $alpha$. Most significantly, our derived results for $alpha$ vacua provides the necessary condition for generating non zero entanglement entropy in primordial cosmology.
In this work, we study the quantum entanglement and compute entanglement entropy in de Sitter space for a bipartite quantum field theory driven by axion originating from ${bf Type~ IIB}$ string compactification on a Calabi Yau three fold (${bf CY^3}$) and in presence of ${bf NS5}$ brane. For this compuation, we consider a spherical surface ${bf S}^2$, which divide the spatial slice of de Sitter (${bf dS_4}$) into exterior and interior sub regions. We also consider the initial choice of vaccum to be Bunch Davies state. First we derive the solution of the wave function of axion in a hyperbolic open chart by constructing a suitable basis for Bunch Davies vacuum state using Bogoliubov transformation. We then, derive the expression for density matrix by tracing over the exterior region. This allows us to compute entanglement entropy and R$acute{e}$nyi entropy in $3+1$ dimension. Further we quantify the UV finite contribution of entanglement entropy which contain the physics of long range quantum correlations of our expanding universe. Finally, our analysis compliments the necessary condition for the violation of Bells inequality in primordial cosmology due to the non vanishing entanglement entropy for axionic Bell pair.
In this work, we study the impact of quantum entanglement on the two-point correlation function and the associated primordial power spectrum of mean square vacuum fluctuation in a bipartite quantum field theoretic system. The field theory that we consider is the effective theory of axion field arising from Type IIB string theory compactified to four dimensions. We compute the expression for the power spectrum of vacuum fluctuation in three different approaches, namely (1) field operator expansion (FOE) technique with the quantum entangled state, (2) reduced density matrix (RDM) formalism with mixed quantum state and (3) the method of non-entangled state (NES). For massless axion field, in all these three formalism, we reproduce, at the leading order, the exact scale-invariant power spectrum which is well known in the literature. We observe that due to quantum entanglement, the sub-leading terms for these thee formalisms are different. Thus, such correction terms break the degeneracy among the analysis of the FOE, RDM and NES formalisms in the super-horizon limit. On the other hand, for massive axion field, we get a slight deviation from scale invariance and exactly quantify the spectral tilt of the power spectrum in small scales. Apart from that, for massless and massive axion field, we find distinguishable features of the power spectrum for the FOE, RDM, and NES on the large scales, which is the result of quantum entanglement. We also find that such large-scale effects are comparable to or greater than the curvature radius of the de Sitter space. Most importantly, in the near future, if experiments probe for early universe phenomena, one can detect such small quantum effects. In such a scenario, it is possible to test the implications of quantum entanglement in primordial cosmology.
We consider the entanglement entropy of a free massive scalar field in the one parameter family of $alpha$-vacua in de Sitter space by using a method developed by Maldacena and Pimentel. An $alpha$-vacuum can be thought of as a state filled with particles from the point of view of the Bunch-Davies vacuum. Of all the $alpha$-vacua we find that the entanglement entropy takes the minimal value in the Bunch-Davies solution. We also calculate the asymptotic value of the Renyi entropy and find that it increases as $alpha$ increases. We argue these feature stem from pair condensation within the non-trivial $alpha$-vacua where the pairs have an intrinsic quantum correlation.
We study the instability of de Sitter space-time (dS) under thermal radiation in different vacua. For this purpose we model the interaction between thermal radiation and unknown ultraviolet physics as a scattering process inside the horizon. Then we argue that the mode function solution of a scalar field in four-dimensional dS can be separated into the incoming and outgoing modes. Different vacua for dS are realized by different combinations of positive frequency modes assigned to each solution. For a minimally coupled massless scalar field, we explicitly compute the behavior of the mode function and the corresponding energy-momentum tensor in the Unruh vacuum near the horizon, and find that the horizon area increases (decreases) in time when the incoming (outgoing) mode contributes to thermal flux.
We study the arguments given in [1] which suggest that the uplifting procedure in the KKLT construction is not valid. First we show that the modification of the SUSY breaking sector of the nilpotent superfield, as proposed in [1], is not consistent with non-linearly realized local supersymmetry of de Sitter supergravity. Keeping this issue aside, we also show that the corresponding bosonic potential does actually describe de Sitter uplifting.