No Arabic abstract
Kolmogorov famously proved that multivariate continuous functions can be represented as a superposition of a small number of univariate continuous functions, $$ f(x_1,dots,x_n) = sum_{q=0}^{2n+1} chi^q left( sum_{p=1}^n psi^{pq}(x_p) right).$$ Fridman cite{fridman} posed the best smoothness bound for the functions $psi^{pq}$, that such functions can be constructed to be Lipschitz continuous with constant 1. Previous algorithms to describe these inner functions have only been Holder continuous, such as those proposed by Koppen and Braun and Griebel. This is problematic, as pointed out by Griebel, in that non-smooth functions have very high storage/evaluation complexity, and this makes Kolmogorovs representation (KR) impractical using the standard definition of the inner functions. To date, no one has presented a method to compute a Lipschitz continuous inner function. In this paper, we revisit Kolmogorovs theorem along with Fridmans result. We examine a simple Lipschitz function which appear to satisfy the necessary criteria for Kolmogorovs representation, but fails in the limit. We then present a full solution to the problem, including an algorithm that computes such a Lipschitz function.
We present a new fast algorithm for computing the Boys function using nonlinear approximation of the integrand via exponentials. The resulting algorithms evaluate the Boys function with real and complex valued arguments and are competitive with previously developed algorithms for the same purpose.
Parametric sensitivity analysis is a critical component in the study of mathematical models of physical systems. Due to its simplicity, finite difference methods are used extensively for this analysis in the study of stochastically modeled reaction networks. Different coupling methods have been proposed to build finite difference estimators, with the split coupling, also termed the stacked coupling, yielding the lowest variance in the vast majority of cases. Analytical results related to this coupling are sparse, and include an analysis of the variance of the coupled processes under the assumption of globally Lipschitz intensity functions [Anderson, SIAM Numerical Analysis, Vol. 50, 2012]. Because of the global Lipschitz assumption utilized in [Anderson, SIAM Numerical Analysis, Vol. 50, 2012], the main result there is only applicable to a small percentage of the models found in the literature, and it was conjectured that similar results should hold for a much wider class of models. In this paper we demonstrate this conjecture to be true by proving the variance of the coupled processes scales in the desired manner for a large class of non-Lipschitz models. We further extend the analysis to allow for time dependence in the parameters. In particular, binary systems with or without time-dependent rate parameters, a class of models that accounts for the vast majority of systems considered in the literature, satisfy the assumptions of our theory.
Developments of nonlocal operators for modeling processes that traditionally have been described by local differential operators have been increasingly active during the last few years. One example is peridynamics for brittle materials and another is nonstandard diffusion including the use of fractional derivatives. A major obstacle for application of these methods is the high computational cost from the numerical implementation of the nonlocal operators. It is natural to consider fast methods of fast multipole or hierarchical matrix type to overcome this challenge. Unfortunately the relevant kernels do not satisfy the standard necessary conditions. In this work a new class of fast algorithms is developed and analyzed, which is some cases reduces the computational complexity of applying nonlocal operators to essentially the same order of magnitude as the complexity of standard local numerical methods.
We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interpolation error $1-r/f$ on the spectral interval of $A$. By minimizing this upper bound over all interpolation points, we obtain a new, simple and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant $r$. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating $r(A)$, where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for $r$ following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of $r$ leading to a small error, even in presence of finite precision arithmetic.
We present a fast method for evaluating expressions of the form $$ u_j = sum_{i = 1,i ot = j}^n frac{alpha_i}{x_i - x_j}, quad text{for} quad j = 1,ldots,n, $$ where $alpha_i$ are real numbers, and $x_i$ are points in a compact interval of $mathbb{R}$. This expression can be viewed as representing the electrostatic potential generated by charges on a line in $mathbb{R}^3$. While fast algorithms for computing the electrostatic potential of general distributions of charges in $mathbb{R}^3$ exist, in a number of situations in computational physics it is useful to have a simple and extremely fast method for evaluating the potential of charges on a line; we present such a method in this paper, and report numerical results for several examples.