Do you want to publish a course? Click here

A new charge reconstruction algorithm for the DAMPE silicon microstrip detector

101   0   0.0 ( 0 )
 Added by Rui Qiao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The DArk Matter Particle Explorer (DAMPE) is one of the four satellites within the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Science (CAS). The Silicon-Tungsten Tracker (STK), which is composed of 768 singled-sided silicon microstrip detectors, is one of the four subdetectors in DAMPE, providing track reconstruction and charge identification for relativistic charged particles. The charge response of DAMPE silicon microstrip detectors is complicated, depending on the incident angle and impact position. A new charge reconstruction algorithm for the DAMPE silicon microstrip detector is introduced in this paper. This algorithm can correct the complicated charge response, and was proved applicable by the ion test beam.



rate research

Read More

111 - Yuhong Yu , Zhiyu Sun , Hong Su 2017
he DArk Matter Particle Explorer (DAMPE) is a general purposed satellite-borne high energy $gamma-$ray and cosmic ray detector, and among the scientific objectives of DAMPE are the searches for the origin of cosmic rays and an understanding of Dark Matter particles. As one of the four detectors in DAMPE, the Plastic Scintillator Detector (PSD) plays an important role in the particle charge measurement and the photons/electrons separation. The PSD has 82 modules, each consists of a long organic plastic scintillator bar and two PMTs at both ends for readout, in two layers and covers an overall active area larger than 82 cm $times$ 82 cm. It can identify the charge states for relativistic ions from H to Fe, and the detector efficiency for Z=1 particles can reach 0.9999. The PSD has been successfully launched with DAMPE on Dec. 17, 2015. In this paper, the design, the assembly, the qualification tests of the PSD and some of the performance measured on the ground have been described in detail.
DAMPE (DArk Matter Particle Explorer) is a spaceborne high-energy cosmic ray and gamma-ray detector, successfully launched in December 2015. It is designed to probe astroparticle physics in the broad energy range from few GeV to 100 TeV. The scientific goals of DAMPE include the identification of possible signatures of Dark Matter annihilation or decay, the study of the origin and propagation mechanisms of cosmic-ray particles, and gamma-ray astronomy. DAMPE consists of four sub-detectors: a plastic scintillator strip detector, a Silicon-Tungsten tracKer-converter (STK), a BGO calorimeter and a neutron detector. The STK is composed of six double layers of single-sided silicon micro-strip detectors interleaved with three layers of tungsten for photon
The DArk Matter Particle Explorer (DAMPE) is one of the four satellites within Strategic Pioneer Research Program in Space Science of the Chinese Academy of Science (CAS). DAMPE can detect electrons, photons and ions in a wide energy range (5 GeV to 10 TeV) and ions up to iron (100GeV to 100 TeV). Plastic Scintillator Detector (PSD) is one of the four payloads in DAMPE, providing e/{gamma} separation and charge identification up to Iron. An ion beam test was carried out for the Qualification Model of PSD in CERN with 40GeV/u Argon primary beams. The Birks saturation and charge resolution of PSD were investigated.
Muons created by $ u_mu$ charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons inducing Cherenkov radiation in the water are reconstructed with dedicated algorithms that allow the determination of the parent neutrino direction with a median angular resolution of about unit{0.4}{degree} for an $E^{-2}$ neutrino spectrum. In this paper, an algorithm optimised for accurate reconstruction of energy and direction of shower events in the ANTARES detector is presented. Hadronic showers of electrically charged particles are produced by the disintegration of the nucleus both in CC and neutral current (NC) interactions of neutrinos in water. In addition, electromagnetic showers result from the CC interactions of electron neutrinos while the decay of a tau lepton produced in $ u_tau$ CC interactions will in most cases lead to either a hadronic or an electromagnetic shower. A shower can be approximated as a point source of photons. With the presented method, the shower position is reconstructed with a precision of about unit{1}{metre}, the neutrino direction is reconstructed with a median angular resolution between unit{2}{degree} and unit{3}{degree} in the energy range of SIrange{1}{1000}{TeV}. In this energy interval, the uncertainty on the reconstructed neutrino energy is about SIrange{5}{10}{%}. The increase in the detector sensitivity due to the use of additional information from shower events in the searches for a cosmic neutrino flux is also presented.
The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of par- ticle detector, with a broad range of applications. Its main features include a very low energy threshold independent of the volume (due to its very low capacitance), a good energy resolution, robustness and a single detection readout channel, in its simplest version. Applications range from radon emanation gas monitoring, neutron flux and gamma counting and spectroscopy to dark matter searches, in particular low mass WIMPs and coherent neutrino scattering measure- ment. Laboratories interested in these various applications share expertise within the NEWS (New Experiments With Sphere) network. SEDINE, a low background prototype installed at underground site of Laboratoire Souterrain de Modane is currently being operated and aims at measuring events at very low energy threshold, around 100 eV. We will present the energy cali- bration with 37Ar, the surface background reduction, the measurement of detector background at sub-keV energies, and show anticipated sensitivities for light dark matter search.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا