Do you want to publish a course? Click here

Ferromagnetism or slow paramagnetic relaxation in Fe-doped Li$_3$N?

62   0   0.0 ( 0 )
 Added by Anton Jesche
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on isothermal magnetization, Mossbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrstalline Li$_2$(Li$_{1-x}$Fe$_x$)N with $x = 0$ and $x approx 0.30$. Magnetic hysteresis emerges at temperatures below $T approx 50,$K with coercivity fields of up to $mu_0H = 11.6,$T at $T = 2,$K and magnetic anisotropy energies of $310,$K ($27,$meV). The ac susceptibility is strongly frequency dependent ($f,=,10$--$10,000,$Hz) and reveals an effective energy barrier for spin reversal of $Delta E approx 1100,$K. The relaxation times follow Arrhenius behavior for $T > 25,$K. For $T < 10,$K, however, the relaxation times of $tau approx 10^{10},$s are only weakly temperature-dependent indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than $25,$J mol$^{-1}_{rm Fe},$K$^{-1}$ which significantly exceeds $R$ln2, the value expected for the entropy of a ground state doublet. Thermal expansion and magnetostriction indicate a weak magneto-elastic coupling in accordance with slow relaxation of the magnetization. The classification of Li$_2$(Li$_{1-x}$Fe$_x$)N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.



rate research

Read More

The nature of a puzzling high temperature ferromagnetism of doped mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al., Nature 431 (2004) 672, has been addressed by static magnetization, muon spin relaxation, nuclear magnetic and electron spin resonance spectroscopy techniques. A precise control of the charge doping was achieved by electrochemical Li intercalation. We find that it provides excess electrons, thereby increasing the number of interacting magnetic vanadium sites, and, at a certain doping level, yields a ferromagnetic-like response persisting up to room temperature. Thus we confirm the surprising previous results on the samples prepared by a completely different intercalation method. Moreover our spectroscopic data provide first ample evidence for the bulk nature of the effect. In particular, they enable a conclusion that the Li nucleates superparamagnetic nanosize spin clusters around the intercalation site which are responsible for the unusual high temperature ferromagnetism of vanadium oxide nanotubes.
Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO$_{3-delta}$, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO$_{3-delta}$ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases.
The magnetic properties of dilute Li$_2$(Li$_{1-x}$Fe$_x$)N with $x sim 0.001$ are dominated by the spin of single, isolated Fe atoms. Below $T = 10$ K the spin-relaxation times become temperature-independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in $textit{transverse}$ magnetic fields that proves the resonant character of this tunneling process. $textit{Longitudinal}$ fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by four orders of magnitude in applied fields of only a few milliTesla reveals exceptionally sharp tunneling resonances. Li$_2$(Li$_{1-x}$Fe$_x$)N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.
We report a uniaxial pressure-dependence of magnetism in layered perovskite strontium ruthenate Sr3Ru2O7. By applying a relatively small uniaxial pressure, greater than 0.1 GPa normal to the RuO2 layer, ferromagnetic ordering manifests below 80 K from the enhanced-paramagnet. Magnetization at 1 kOe and 2 K becomes 100 times larger than that under ambient condition. Uniaxial pressure dependence of Curie temperature T_C suggests the first order magnetic transition. Origin of this uniaxial-pressure induced ferromagnetism is discussed in terms of the rotation of RuO6 octahedra within the RuO2 plane.
We present field effect measurements on discontinuous 2D thin films which are composed of a sub monolayer of nano-grains of Au, Ni, Ag or Al. Like other electron glasses these systems exhibit slow conductance relaxation and memory effects. However, unlike other systems, the discontinuous films exhibit a dramatic slowing down of the dynamics below a characteristic temperature $T^*$. $T^*$ is typically between 10-50K and is sample dependent. For $T<T^*$ the sample exhibits a few other peculiar features such as repeatable conductance fluctuations in millimeter size samples. We suggest that the enhanced system sluggishness is related to the current carrying network becoming very dilute in discontinuous films so that the system contains many parts which are electrically very weakly connected and the transport is dominated by very few weak links. This enables studying the glassy properties of the sample as it transitions from a macroscopic sample to a mesocopic sample, hence, the results provide new insight on the underlying physics of electron glasses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا