Do you want to publish a course? Click here

Time-of-Flight Measurements as a Possible Method to Observe Anyonic Statistics

51   0   0.0 ( 0 )
 Added by Onur Umucalilar
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a standard time-of-flight experiment as a method for observing the anyonic statistics of quasiholes in a fractional quantum Hall state of ultracold atoms. The quasihole states can be stably prepared by pinning the quasiholes with localized potentials and a measurement of the mean square radius of the freely expanding cloud, which is related to the average total angular momentum of the initial state, offers direct signatures of the statistical phase. Our proposed method is validated by Monte Carlo calculations for $ u=1/2$ and $1/3$ fractional quantum Hall liquids containing a realistic number of particles. Extensions to quantum Hall liquids of light and to non-Abelian anyons are briefly discussed.



rate research

Read More

In this work we provide a general methodology to directly measure topological order in cold atom systems. As an application we propose the realisation of a characteristic topological model, introduced by Haldane, using optical lattices loaded with fermionic atoms in two internal states. We demonstrate that time-of-flight measurements directly reveal the topological order of the system in the form of momentum space skyrmions.
Ring exchange is an elementary interaction for modeling unconventional topological matters which hold promise for efficient quantum information processing. We report the observation of four-body ring-exchange interactions and the topological properties of anyonic excitations within an ultracold atom system. A minimum toric code Hamiltonian in which the ring exchange is the dominant term, was implemented by engineering a Hubbard Hamiltonian that describes atomic spins in disconnected plaquette arrays formed by two orthogonal superlattices. The ring-exchange interactions were resolved from the dynamical evolutions in the spin orders, matching well with the predicted energy gaps between two anyonic excitations of the spin system. A braiding operation was applied to the spins in the plaquettes and an induced phase $1.00(3)pi$ in the four-spin state was observed, confirming $frac{1}{2}$-anynoic statistics. This work represents an essential step towards studying topological matters with many-body systems and the applications in quantum computation and simulation.
We study the non-equilibrium dynamics of Abelian anyons in a one-dimensional system. We find that the interplay of anyonic statistics and interactions gives rise to spatially asymmetric particle transport together with a novel dynamical symmetry that depends on the anyonic statistical angle and the sign of interactions. Moreover, we show that anyonic statistics induces asymmetric spreading of quantum information, characterized by asymmetric light cones of out-of-time-ordered correlators. Such asymmetric dynamics is in sharp contrast with the dynamics of conventional fermions or bosons, where both the transport and information dynamics are spatially symmetric. We further discuss experiments with cold atoms where the predicted phenomena can be observed using state-of-the-art technologies. Our results pave the way toward experimentally probing anyonic statistics through non-equilibrium dynamics.
We present a technique for detecting topological invariants -- Chern numbers -- from time-of-flight images of ultra-cold atoms. We show that the Chern numbers of integer quantum Hall states of lattice fermions leave their fingerprints in the atoms momentum distribution. We analytically demonstrate that the number of local maxima in the momentum distribution is equal to the Chern number in two limiting cases, for large hopping anisotropy and in the continuum limit. In addition, our numerical simulations beyond these two limits show that these local maxima persist for a range of parameters. Thus, an everyday observable in cold atom experiments can serve as a useful tool to characterize and visualize quantum states with non-trivial topology.
Principles of operation, construction and first test results of a Dielectric Resistive Plate Chamber (DRPC) are described. The detector has shown stability of operation in the avalanche mode of gas amplfication within a wide range of applied voltages. Double-gap DRPCs have demonstrated the MIP registration efficiency of 97% and the time resolution of 180-200 ps. No changes in DRPC operation have been observed with test beam intensities up to 10^3 Hz/cm^2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا