Do you want to publish a course? Click here

Floquet Scalar Dynamics in Global AdS

84   0   0.0 ( 0 )
 Added by Anxo Biasi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study periodically driven scalar fields and the resulting geometries with global AdS asymptotics. These solutions describe the strongly coupled dynamics of dual finite-size quantum systems under a periodic driving which we interpret as Floquet condensates. They span a continuous two-parameter space that extends the linearized solutions on AdS. We map the regions of stability in the solution space. In a significant portion of the unstable subspace, two very different endpoints are reached depending upon the sign of the perturbation. Collapse into a black hole occurs for one sign. For the opposite sign instead one attains a regular solution with periodic modulation. We also construct quenches where the driving frequency and amplitude are continuously varied. Quasistatic quenches can interpolate between pure AdS and sourced solutions with time periodic vev. By suitably choosing the quasistatic path one can obtain boson stars dual to Floquet condensates at zero driving field. We characterize the adiabaticity of the quenching processes. Besides, we speculate on the possible connections of this framework with time crystals.



rate research

Read More

We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in $D=4$. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly time-periodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In $D=3$ the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.
125 - Z. Chang IHEP 2001
AdS dynamics for massive scalar field is studied both by solving exactly the equation of motion and by constructing bulk-boundary propagator. A Robertson-Walker-like metric is deduced from the familiar SO(2,n) invariant metric. The metric allows us to present a time-like Killing vector, which is not only invariant under space-like transformations but also invariant under the isometric transformations of SO(2,n) in certain sense. A horizon appears in this coordinate system. Singularities of field variables at boundary are demonstrated explicitly. It is shown that there is a one-to-one correspondence among the exact solutions and the bulk fields obtained by using the bulk-boundary propagator.
We study finite temperature correlation functions and quasinormal modes in a strongly coupled conformal field theory holographically dual to a small black hole in global Anti-de Sitter spacetime. Upon variation of the black hole radius, our results smoothly interpolate between known limits corresponding to large black holes and thermal AdS space. This implies that the quantities are continuous functions of energy density in the microcanonical ensemble, thus smoothly connecting the deconfined and confined phases that are separated by a first order phase transition in the canonical description.
We introduce a bosonic ambitwistor string theory in AdS space. Even though the theory is anomalous at the quantum level, one can nevertheless use it in the classical limit to derive a novel formula for correlation functions of boundary CFT operators in arbitrary space-time dimensions. The resulting construction can be treated as a natural extension of the CHY formalism for the flat-space S-matrix, as it similarly expresses tree-level amplitudes in AdS as integrals over the moduli space of Riemann spheres with punctures. These integrals localize on an operator-valued version of scattering equations, which we derive directly from the ambitwistor string action on a coset manifold. As a testing ground for this formalism we focus on the simplest case of ambitwistor string coupled to two current algebras, which gives bi-adjoint scalar correlators in AdS. In order to evaluate them directly, we make use of a series of contour deformations on the moduli space of punctured Riemann spheres and check that the result agrees with tree level Witten diagram computations to all multiplicity. We also initiate the study of eigenfunctions of scattering equations in AdS, which interpolate between conformal partial waves in different OPE channels, and point out a connection to an elliptic deformation of the Calogero-Sutherland model.
We study a massive real scalar field that breaks translation symmetry dynamically. Higher-gradient terms favour modulated configurations and neither finite density nor temperature are needed. In the broken phase, the energy density depends on the spatial position and the linear fluctuations show phononic dispersion. We then study a related massless scalar model where the modulated vacua break also the field shift symmetry and give rise to an additional Nambu-Goldstone mode, the shifton. We discuss the independence of the shifton and the phonon and draw an analogy to rotons in superfluids. Proceeding from first-principles, we re-obtain and generalise some standard results for one-dimensional lattices. Eventually, we prove stability against geometric deformations extending existing analyses for elastic media to the higher-derivatives cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا