Do you want to publish a course? Click here

Monte-Carlo methods for the pricing of American options: a semilinear BSDE point of view

173   0   0.0 ( 0 )
 Added by Bruno Bouchard
 Publication date 2017
  fields Financial
and research's language is English




Ask ChatGPT about the research

We extend the viscosity solution characterization proved in [5] for call/put American option prices to the case of a general payoff function in a multi-dimensional setting: the price satisfies a semilinear re-action/diffusion type equation. Based on this, we propose two new numerical schemes inspired by the branching processes based algorithm of [8]. Our numerical experiments show that approximating the discontinu-ous driver of the associated reaction/diffusion PDE by local polynomials is not efficient, while a simple randomization procedure provides very good results.



rate research

Read More

The main objective of this paper is to present an algorithm of pricing perpetual American put options with asset-dependent discounting. The value function of such an instrument can be described as begin{equation*} V^{omega}_{text{A}^{text{Put}}}(s) = sup_{tauinmathcal{T}} mathbb{E}_{s}[e^{-int_0^tau omega(S_w) dw} (K-S_tau)^{+}], end{equation*} where $mathcal{T}$ is a family of stopping times, $omega$ is a discount function and $mathbb{E}$ is an expectation taken with respect to a martingale measure. Moreover, we assume that the asset price process $S_t$ is a geometric Levy process with negative exponential jumps, i.e. $S_t = s e^{zeta t + sigma B_t - sum_{i=1}^{N_t} Y_i}$. The asset-dependent discounting is reflected in the $omega$ function, so this approach is a generalisation of the classic case when $omega$ is constant. It turns out that under certain conditions on the $omega$ function, the value function $V^{omega}_{text{A}^{text{Put}}}(s)$ is convex and can be represented in a closed form; see Al-Hadad and Palmowski (2021). We provide an option pricing algorithm in this scenario and we present exact calculations for the particular choices of $omega$ such that $V^{omega}_{text{A}^{text{Put}}}(s)$ takes a simplified form.
109 - Fabien Le Floch 2021
This paper presents the Runge-Kutta-Legendre finite difference scheme, allowing for an additional shift in its polynomial representation. A short presentation of the stability region, comparatively to the Runge-Kutta-Chebyshev scheme follows. We then explore the problem of pricing American options with the Runge-Kutta-Legendre scheme under the one factor Black-Scholes and the two factor Heston stochastic volatility models, as well as the pricing of butterfly spread and digital options under the uncertain volatility model, where a Hamilton-Jacobi-Bellman partial differential equation needs to be solved. We explore the order of convergence in these problems, as well as the option greeks stability, compared to the literature and popular schemes such as Crank-Nicolson, with Rannacher time-stepping.
We consider a general path-dependent version of the hedging problem with price impact of Bouchard et al. (2019), in which a dual formulation for the super-hedging price is obtained by means of PDE arguments, in a Markovian setting and under strong regularity conditions. Using only probabilistic arguments, we prove, in a path-dependent setting and under weak regularity conditions, that any solution to this dual problem actually allows one to construct explicitly a perfect hedging portfolio. From a pure probabilistic point of view, our approach also allows one to exhibit solutions to a specific class of second order forward backward stochastic differential equations, in the sense of Cheridito et al. (2007). Existence of a solution to the dual optimal control problem is also addressed in particular settings. As a by-product of our arguments, we prove a version of It{^o}s Lemma for path-dependent functionals that are only C^{0,1} in the sense of Dupire.
In this paper we develop an algorithm to calculate the prices and Greeks of barrier options in a hyper-exponential additive model with piecewise constant parameters. We obtain an explicit semi-analytical expression for the first-passage probability. The solution rests on a randomization and an explicit matrix Wiener-Hopf factorization. Employing this result we derive explicit expressions for the Laplace-Fourier transforms of the prices and Greeks of barrier options. As a numerical illustration, the prices and Greeks of down-and-in digital and down-and-in call options are calculated for a set of parameters obtained by a simultaneous calibration to Stoxx50E call options across strikes and four different maturities. By comparing the results with Monte-Carlo simulations, we show that the method is fast, accurate, and stable.
We extend the approach of Carr, Itkin and Muravey, 2021 for getting semi-analytical prices of barrier options for the time-dependent Heston model with time-dependent barriers by applying it to the so-called $lambda$-SABR stochastic volatility model. In doing so we modify the general integral transform method (see Itkin, Lipton, Muravey, Generalized integral transforms in mathematical finance, World Scientific, 2021) and deliver solution of this problem in the form of Fourier-Bessel series. The weights of this series solve a linear mixed Volterra-Fredholm equation (LMVF) of the second kind also derived in the paper. Numerical examples illustrate speed and accuracy of our method which are comparable with those of the finite-difference approach at small maturities and outperform them at high maturities even by using a simplistic implementation of the RBF method for solving the LMVF.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا