No Arabic abstract
A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, a 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfv{e}n wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.
Alfvenic waves have been proposed as an important energy transport mechanism in coronal loops, capable of delivering energy to both the corona and chromosphere and giving rise to many observed features, of flaring and quiescent regions. In previous work, we established that resistive dissipation of waves (ambipolar diffusion) can drive strong chromospheric heating and evaporation, capable of producing flaring signatures. However, that model was based on a simplified assumption that the waves propagate instantly to the chromosphere, an assumption which the current work removes. Via a ray tracing method, we have implemented traveling waves in a field-aligned hydrodynamic simulation that dissipate locally as they propagate along the field line. We compare this method to and validate against the magnetohydrodynamics code Lare3D. We then examine the importance of travel times to the dynamics of the loop evolution, finding that (1) the ionization level of the plasma plays a critical role in determining the location and rate at which waves dissipate; (2) long duration waves effectively bore a hole into the chromosphere, allowing subsequent waves to penetrate deeper than previously expected, unlike an electron beam whose energy deposition rises in height as evaporation reduces the mean-free paths of the electrons; (3) the dissipation of these waves drives a pressure front that propagates to deeper depths, unlike energy deposition by an electron beam.
To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.
Context. Photospheric motions shuffle the footpoints of the strong axial magnetic field that threads coronal loops giving rise to turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets where energy is deposited at small-scales and the heating occurs. Previous studies show that current sheets thickness is orders of magnitude smaller than current state of the art observational resolution (~700 km). Aim. In order to understand coronal heating and interpret correctly observations it is crucial to study the thermodynamics of such a system where energy is deposited at unresolved small-scales. Methods. Fully compressible three-dimensional magnetohydrodynamic simulations are carried out to understand the thermodynamics of coronal heating in the magnetically confined solar corona. Results. We show that temperature is highly structured at scales below observational resolution and nonhomogeneously distributed so that only a fraction of the coronal mass and volume gets heated at each time. Conclusions. This is a multi-thermal system where hotter and cooler plasma strands are found one next to the other also at sub-resolution scales and exhibit a temporal dynamics.
The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multi-thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 Tesla are presented. To connect these simulations to observations we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.
The heating of the solar chromosphere and corona to the observed high temperatures, imply the presence of ongoing heating that balances the strong radiative and thermal conduction losses expected in the solar atmosphere. It has been theorized for decades that the required heating mechanisms of the chromospheric and coronal parts of the active regions, quiet-Sun, and coronal holes are associated with the solar magnetic fields. However, the exact physical process that transport and dissipate the magnetic energy which ultimately leads to the solar plasma heating are not yet fully understood. The current understanding of coronal heating relies on two main mechanism: reconnection and MHD waves that may have various degrees of importance in different coronal regions. In this review we focus on recent advances in our understanding of MHD wave heating mechanisms. First, we focus on giving an overview of observational results, where we show that different wave modes have been discovered in the corona in the last decade, many of which are associated with a significant energy flux, either generated in situ or pumped from the lower solar atmosphere. Afterwards, we summarise the recent findings of numerical modelling of waves, motivated by the observational results. Despite the advances, only 3D MHD models with Alfven wave heating in an unstructured corona can explain the observed coronal temperatures compatible with the quiet Sun, while 3D MHD wave heating models including cross-field density structuring are not yet able to account for the heating of coronal loops in active regions to their observed temperature.