Do you want to publish a course? Click here

Controlled Transport between Fermi Superfluids Through a Quantum Point Contact

189   0   0.0 ( 0 )
 Added by Juan Yao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent advances in experimental techniques allow one to create a quantum point contact between two Fermi superfluids in cold atomic gases with a tunable transmission coefficient. In this Letter we propose that three distinct behaviors of charge transports between two Fermi superfluids can be realized in this single setup, which are the multiple Andreev reflection, the self-trapping and the Josephson oscillation. We investigate the dynamics of atom number difference between two reservoirs for different initial conditions and different transmission coefficients, and present a coherent picture of how the crossover between different regimes takes place. Our results can now be directly verified in current experimental system.



rate research

Read More

270 - Boyang Liu , Hui Zhai , 2016
In this work we study the particle conductance of a strongly interacting Fermi gas through a quantum point contact. With an atom-molecule two-channel model, we compute the contribution to particle conductance by both the fermionic atoms and the bosonic molecules using the Keldysh formalism. Focusing on the regime above the Fermi superfluid transition temperature, we find that the fermionic contribution to the conductance is reduced by interaction compared with the quantized value for the non-interacting case; while the bosonic contribution to the conductance exhibits a plateau with non-universal values that is larger than the quantized conductance. This feature is particularly profound at temperature close to the superfluid transition. We emphasize that the enhanced conductance arises because of the bosonic nature of closed channel molecules and the low-dimensionality of the quantum point contact.
We study transport of noninteracting fermions through a periodically driven quantum point contact (QPC) connecting two tight-binding chains. Initially, each chain is prepared in its own equilibrium state, generally with a bias in chemical potentials and temperatures. We examine the heating rate (or, alternatively, energy increase per cycle) in the nonequilibrium time-periodic steady state established after initial transient dynamics. We find that the heating rate vanishes identically when the driving frequency exceeds the bandwidth of the chain. We first establish this fact for a particular type of QPC where the heating rate can be calculated analytically. Then we verify numerically that this nonequilibrium phase transition is present for a generic QPC. Finally, we derive this effect perturbatively in leading order for cases when the QPC Hamiltonian can be considered as a small perturbation. Strikingly, we discover that for certain QPCs the current averaged over the driving cycle also vanishes above the critical frequency, despite a persistent bias. This shows that a driven QPC can act as a frequency-controlled quantum switch.
Using near-exact numerical simulations we study the propagation of an impurity through a one-dimensional Bose lattice gas for varying bosonic interaction strengths and filling factors at zero temperature. The impurity is coupled to the Bose gas and confined to a separate tilted lattice. The precise nature of the transport of the impurity is specific to the excitation spectrum of the Bose gas which allows one to measure properties of the Bose gas non-destructively, in principle, by observing the impurity; here we focus on the spatial and momentum distributions of the impurity as well as its reduced density matrix. For instance we show it is possible to determine whether the Bose gas is commensurately filled as well as the bandwidth and gap in its excitation spectrum. Moreover, we show that the impurity acts as a witness to the cross-over of its environment from the weakly to the strongly interacting regime, i.e., from a superfluid to a Mott insulator or Tonks-Girardeau lattice gas and the effects on the impurity in both of these strongly-interacting regimes are clearly distinguishable. Finally, we find that the spatial coherence of the impurity is related to its propagation through the Bose gas, giving an experimentally controllable example of noise-enhanced quantum transport.
The Fulde-Ferrell (FF) superfluid phase, in which fermions form finite-momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite-momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite-momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.
167 - Jay D. Sau , K. Sengupta 2014
We show that a closed quantum system driven through a quantum critical point with two rates $omega_1$ (which controls its proximity to the quantum critical point) and $omega_2$ (which controls the dispersion of the low-energy quasiparticles at the critical point) exhibits novel scaling laws for defect density $n$ and residual energy $Q$. We demonstrate suppression of both $n$ and $Q$ with increasing $omega_2$ leading to an alternate route to achieving near-adiabaticity in a finite time for a quantum system during its passage through a critical point. We provide an exact solution for such dynamics with linear drive protocols applied to a class of integrable models, supplement this solution with scaling arguments applicable to generic many-body Hamiltonians, and discuss specific models and experimental systems where our theory may be tested.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا