Do you want to publish a course? Click here

Two-dimensional Anti-jamming Mobile Communication Based on Reinforcement Learning

108   0   0.0 ( 0 )
 Added by Han Guoan
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

By using smart radio devices, a jammer can dynamically change its jamming policy based on opposing security mechanisms; it can even induce the mobile device to enter a specific communication mode and then launch the jamming policy accordingly. On the other hand, mobile devices can exploit spread spectrum and user mobility to address both jamming and interference. In this paper, a two-dimensional anti-jamming mobile communication scheme is proposed in which a mobile device leaves a heavily jammed/interfered-with frequency or area. It is shown that, by applying reinforcement learning techniques, a mobile device can achieve an optimal communication policy without the need to know the jamming and interference model and the radio channel model in a dynamic game framework. More specifically, a hotbooting deep Q-network based two-dimensional mobile communication scheme is proposed that exploits experiences in similar scenarios to reduce the exploration time at the beginning of the game, and applies deep convolutional neural network and macro-action techniques to accelerate the learning speed in dynamic situations. Several real-world scenarios are simulated to evaluate the proposed method. These simulation results show that our proposed scheme can improve both the signal-to-interference-plus-noise ratio of the signals and the utility of the mobile devices against cooperative jamming compared with benchmark schemes.



rate research

Read More

The problem of quality of service (QoS) and jamming-aware communications is considered in an adversarial wireless network subject to external eavesdropping and jamming attacks. To ensure robust communication against jamming, an interference-aware routing protocol is developed that allows nodes to avoid communication holes created by jamming attacks. Then, a distributed cooperation framework, based on deep reinforcement learning, is proposed that allows nodes to assess network conditions and make deep learning-driven, distributed, and real-time decisions on whether to participate in data communications, defend the network against jamming and eavesdropping attacks, or jam other transmissions. The objective is to maximize the network performance that incorporates throughput, energy efficiency, delay, and security metrics. Simulation results show that the proposed jamming-aware routing approach is robust against jamming and when throughput is prioritized, the proposed deep reinforcement learning approach can achieve significant (measured as three-fold) increase in throughput, compared to a benchmark policy with fixed roles assigned to nodes.
115 - Haichao Shi , Peng Li , Bo Wang 2018
Recently it has shown that the policy-gradient methods for reinforcement learning have been utilized to train deep end-to-end systems on natural language processing tasks. Whats more, with the complexity of understanding image content and diverse ways of describing image content in natural language, image captioning has been a challenging problem to deal with. To the best of our knowledge, most state-of-the-art methods follow a pattern of sequential model, such as recurrent neural networks (RNN). However, in this paper, we propose a novel architecture for image captioning with deep reinforcement learning to optimize image captioning tasks. We utilize two networks called policy network and value network to collaboratively generate the captions of images. The experiments are conducted on Microsoft COCO dataset, and the experimental results have verified the effectiveness of the proposed method.
Malware analysis has been extensively investigated as the number and types of malware has increased dramatically. However, most previous studies use end-to-end systems to detect whether a sample is malicious, or to identify its malware family. In this paper, we propose a neural network framework composed of an embedder, an encoder, and a filter to learn malware representations from characteristic execution sequences for malware family classification. The embedder uses BERT and Sent2Vec, state-of-the-art embedding modules, to capture relations within a single API call and among consecutive API calls in an execution trace. The encoder comprises gated recurrent units (GRU) to preserve the ordinal position of API calls and a self-attention mechanism for comparing intra-relations among different positions of API calls. The filter identifies representative API calls to build the malware representation. We conduct broad experiments to determine the influence of individual framework components. The results show that the proposed framework outperforms the baselines, and also demonstrates that considering Sent2Vec to learn complete API call embeddings and GRU to explicitly preserve ordinal information yields more information and thus significant improvements. Also, the proposed approach effectively classifies new malicious execution traces on the basis of similarities with previously collected families.
170 - Lun Wang , Zaynah Javed , Xian Wu 2021
Recent research has confirmed the feasibility of backdoor attacks in deep reinforcement learning (RL) systems. However, the existing attacks require the ability to arbitrarily modify an agents observation, constraining the application scope to simple RL systems such as Atari games. In this paper, we migrate backdoor attacks to more complex RL systems involving multiple agents and explore the possibility of triggering the backdoor without directly manipulating the agents observation. As a proof of concept, we demonstrate that an adversary agent can trigger the backdoor of the victim agent with its own action in two-player competitive RL systems. We prototype and evaluate BACKDOORL in four competitive environments. The results show that when the backdoor is activated, the winning rate of the victim drops by 17% to 37% compared to when not activated.
Mobile crowdsensing (MCS) is an emerging sensing data collection pattern with scalability, low deployment cost, and distributed characteristics. Traditional MCS systems suffer from privacy concerns and fair reward distribution. Moreover, existing privacy-preserving MCS solutions usually focus on the privacy protection of data collection rather than that of data processing. To tackle faced problems of MCS, in this paper, we integrate federated learning (FL) into MCS and propose a privacy-preserving MCS system, called textsc{CrowdFL}. Specifically, in order to protect privacy, participants locally process sensing data via federated learning and only upload encrypted training models. Particularly, a privacy-preserving federated averaging algorithm is proposed to average encrypted training models. To reduce computation and communication overhead of restraining dropped participants, discard and retransmission strategies are designed. Besides, a privacy-preserving posted pricing incentive mechanism is designed, which tries to break the dilemma of privacy protection and data evaluation. Theoretical analysis and experimental evaluation on a practical MCS application demonstrate the proposed textsc{CrowdFL} can effectively protect participants privacy and is feasible and efficient.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا