Do you want to publish a course? Click here

Holographic Floquet states II: Floquet condensation of vector mesons in nonequilibrium phase diagram

71   0   0.0 ( 0 )
 Added by Keiju Murata Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the aim to reveal universal features of hadronic matter and correlated Dirac insulators in strong AC-electric fields, we study the $mathcal{N}=2$ supersymmetric QCD with a finite quark mass driven by a rotating electric field $mathcal{E}_x+imathcal{E}_y= E e^{iOmega t}$. The analysis is done in the holographically dual D3/D7 system in the co-rotating frame, effectively. The nonequilibrium phase diagram is determined from the threshold electric field at which the insulator phase breaks down to a conductive phase due to the AC version of the Schwinger mechanism. The external field induces a rotating current $mathcal{J}_x + i mathcal{J}_y = J e^{iOmega t}$ originating from vacuum polarization and dissipative current in the insulating and conductive phases respectively. Intriguing features are observed as the frequency $Omega$ approaches resonance with the meson excitation energy $Omega_{rm meson}$. There, the threshold minimizes and a condensate of vector mesons with oscillating current exists even in the zero driving field limit. This state, which we call Floquet condensate of vector mesons, is expected to be dynamically stable realizing a non-thermal fixed point that breaks time translational and reversal symmetries. Our finding has many similarities with exciton BEC discussed in solid state systems, where the semiconductor is to be replaced by materials hosting gapped Dirac electrons, e.g. 3D topological insulators or bismuth. Vector meson Floquet condensate may also have implications in the pre-thermalized dynamics in heavy ion collision experiments.



rate research

Read More

We study the response of a (2+1)-dimensional gauge theory to an external rotating electric field. In the strong coupling regime such system is formulated holographically in a top-down model constructed by intersecting D3- and D5-branes along 2+1 dimensions, in the quenched approximation, in which the D5-brane is a probe in the AdS_5 x S^5 geometry. The system has a non-equilibrium phase diagram with conductive and insulator phases. The external driving induces a rotating current due to vacuum polarization (in the insulator phase) and to Schwinger effect (in the conductive phase). For some particular values of the driving frequency the external field resonates with the vector mesons of the model and a rotating current can be produced even in the limit of vanishing driving field. These features are in common with the (3+1) dimensional setup based on the D3-D7 brane model and hint on some interesting universality. We also compute the conductivities paying special attention to the photovoltaic induced Hall effect, which is only present for massive charged carriers. In the vicinity of the Floquet condensate the optical Hall coefficient persists at zero driving field, signalling time reversal symmetry breaking.
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the $mathcal{N}=2$ supersymmetric massless QCD in a rotating electric field in the large $N_c$ limit realizing the first example of a holographic Floquet state. In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: In the high frequency region, the Ohms law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the periodic thermodynamic concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
Nonequilibrium steady states (NESSs) in periodically driven dissipative quantum systems are vital in Floquet engineering. Here, for high-frequency drives with Lindblad-type dissipation, we develop a general theory to characterize and analyze NESSs based on the high-frequency (HF) expansion without numerically solving the time evolution. This theory shows that NESSs can deviate from the Floquet-Gibbs state depending on the dissipation type. We show the validity and usefulness of the HF-expansion approach in concrete models for a diamond nitrogen-vacancy (NV) center, a kicked open XY spin chain with topological phase transition under boundary dissipation, and the Heisenberg spin chain in a circularly-polarized magnetic field under bulk dissipation. In particular, for the isotropic Heisenberg chain, we propose the dissipation-assisted terahertz (THz) inverse Faraday effect in quantum magnets. Our theoretical framework applies to various time-periodic Lindblad equations that are currently under active research.
We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the magic angle driven by circularly polarized laser pulses. Employing a full Moire-unit-cell tight-binding Hamiltonian based on first-principles electronic structure we show that the band topology in the bilayer, at twisting angles above 1.05$^circ$, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature of a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or mid-infrared photon-energy regimes. This implies that Moire superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium.
In this work, we study non-equilibrium dynamics in Floquet conformal field theories (CFTs) in 1+1D, in which the driving Hamiltonian involves the energy-momentum density spatially modulated by an arbitrary smooth function. This generalizes earlier work which was restricted to the sine-square deformed type of Floquet Hamiltonians, operating within a $mathfrak{sl}_2$ sub-algebra. Here we show remarkably that the problem remains soluble in this generalized case which involves the full Virasoro algebra, based on a geometrical approach. It is found that the phase diagram is determined by the stroboscopic trajectories of operator evolution. The presence/absence of spatial fixed points in the operator evolution indicates that the driven CFT is in a heating/non-heating phase, in which the entanglement entropy grows/oscillates in time. Additionally, the heating regime is further subdivided into a multitude of phases, with different entanglement patterns and spatial distribution of energy-momentum density, which are characterized by the number of spatial fixed points. Phase transitions between these different heating phases can be achieved simply by changing the duration of application of the driving Hamiltonian. We demonstrate the general features with concrete CFT examples and compare the results to lattice calculations and find remarkable agreement.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا