No Arabic abstract
As quantum circuits increase in size, it is critical to establish scalable multiqubit fidelity metrics. Here we investigate three-qubit randomized benchmarking (RB) with fixed-frequency transmon qubits coupled to a common bus with pairwise microwave-activated interactions (cross-resonance). We measure, for the first time, a three-qubit error per Clifford of 0.106 for all-to-all gate connectivity and 0.207 for linear gate connectivity. Furthermore, by introducing mixed dimensionality simultaneous RB --- simultaneous one- and two-qubit RB --- we show that the three-qubit errors can be predicted from the one- and two-qubit errors. However, by introducing certain coherent errors to the gates we can increase the three-qubit error to 0.302, an increase that is not predicted by a proportionate increase in the one- and two-qubit errors from simultaneous RB. This demonstrates three-qubit RB as a unique multiqubit metric.
A precise measurement of dephasing over a range of timescales is critical for improving quantum gates beyond the error correction threshold. We present a metrological tool, based on randomized benchmarking, capable of greatly increasing the precision of Ramsey and spin echo sequences by the repeated but incoherent addition of phase noise. We find our SQUID-based qubit is not limited by $1/f$ flux noise at short timescales, but instead observe a telegraph noise mechanism that is not amenable to study with standard measurement techniques.
To improve the performance of multi-qubit algorithms on quantum devices it is critical to have methods for characterizing non-local quantum errors such as crosstalk. To address this issue, we propose and test an extension to the analysis of simultaneous randomized benchmarking data -- correlated randomized benchmarking. We fit the decay of correlated polarizations to a composition of fixed-weight depolarizing maps to characterize the locality and weight of crosstalk errors. From these errors we introduce a crosstalk metric which indicates the distance to the closest map with only local errors. We demonstrate this technique experimentally with a four-qubit superconducting device and utilize correlated RB to validate crosstalk reduction when we implement an echo sequence.
A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standard process tomography is limited by errors in state preparation, measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect adverse error-compounding when gates are composed in long sequences. An additional problem is due to the fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower. Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that yields estimates of the computationally relevant errors without relying on accurate state preparation and measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion qubits, establishing a one-qubit error probability per randomized pi/2 pulse of 0.00482(17) in a particular experiment. We expect this error probability to be readily improved with straightforward technical modifications.
We describe a simple randomized benchmarking protocol for quantum information processors and obtain a sequence of models for the observable fidelity decay as a function of a perturbative expansion of the errors. We are able to prove that the protocol provides an efficient and reliable estimate of an average error-rate for a set operations (gates) under a general noise model that allows for both time and gate-dependent errors. We determine the conditions under which this estimate remains valid and illustrate the protocol through numerical examples.
Any technology requires precise benchmarking of its components, and the quantum technologies are no exception. Randomized benchmarking allows for the relatively resource economical estimation of the average gate fidelity of quantum gates from the Clifford group, assuming identical noise levels for all gates, making use of suitable sequences of randomly chosen Clifford gates. In this work, we report significant progress on randomized benchmarking, by showing that it can be done for individual quantum gates outside the Clifford group, even for varying noise levels per quantum gate. This is possible at little overhead of quantum resources, but at the expense of a significant classical computational cost. At the heart of our analysis is a representation-theoretic framework that we develop here which is brought into contact with classical estimation techniques based on bootstrapping and matrix pencils. We demonstrate the functioning of the scheme at hand of benchmarking tensor powers of T-gates. Apart from its practical relevance, we expect this insight to be relevant as it highlights the role of assumptions made on unknown noise processes when characterizing quantum gates at high precision.