High-Harmonic Generation in Mott Insulators


Abstract in English

Using Floquet dynamical mean-field theory, we study the high-harmonic generation in the time-periodic steady states of wide-gap Mott insulators under AC driving. In the strong-field regime, the harmonic intensity exhibits multiple plateaus, whose cutoff energies $epsilon_{rm cut} = U + mE_0$ scale with the Coulomb interaction $U$ and the maximum field strength $E_0$. In this regime, the created doublons and holons are localized because of the strong field and the $m$-th plateau originates from the recombination of $m$-th nearest-neighbor doublon-holon pairs. In the weak-field regime, there is only a single plateau in the intensity, which originates from the recombination of itinerant doublons and holons. Here, $epsilon_{rm cut} = Delta_{rm gap} + alpha E_0$, with $Delta_{rm gap}$ the band gap and $alpha>1$. We demonstrate that the Mott insulator shows a stronger high-harmonic intensity than a semiconductor model with the same dispersion as the Mott insulator, even if the semiconductor bands are broadened by impurity scattering to mimic the incoherent scattering in the Mott insulator.

Download