Do you want to publish a course? Click here

Positive Opetopes with Contractions form a Test Category

78   0   0.0 ( 0 )
 Added by Marek Zawadowski
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We show that the category of positive opetopes with contraction morphisms, i.e. all face maps and some degeneracies, forms a test category. The category of positive opetopic sets pOpeSet can be defined as a full subcategory of the category of polygraphs Poly. An object of pOpeSet has generators whose codomains are again generators and whose domains are non-identity cells (i.e. non-empty composition of generators). The category pOpeSet is a presheaf category with the exponent being called the category of positive opetopes pOpe. Objects of pOpe are called positive opetopes and morphisms are face maps only. Since Poly has a full-on-isomorphisms embedding into the category of omega-categories oCat, we can think of morphisms in pOpe as omega-functors that send generators to generators. The category of positive opetopes with contractions pOpe_iota has the same objects and face maps pOpe, but in addition it has some degeneracy maps. A morphism in pOpe_iota is an omega-functor that sends generators to either generators or to identities on generators. We show that the category pOpe_iota is a test category.



rate research

Read More

61 - Marek Zawadowski 2020
We show that the (positive) zoom complexes, here called tree complexes, with fairly natural morphisms, form a dual category to the category of positive opetopes with contraction epimorphisms. We also show how this duality can be slightly generalized to thicket complexes and opetopic cardinals.
We study the effect of edge contractions on simplicial homology because these contractions have turned to be useful in various applications involving topology. It was observed previously that contracting edges that satisfy the so called link condition preserves homeomorphism in low dimensional complexes, and homotopy in general. But, checking the link condition involves computation in all dimensions, and hence can be costly, especially in high dimensional complexes. We define a weaker and more local condition called the p-link condition for each dimension p, and study its effect on edge contractions. We prove the following: (i) For homology groups, edges satisfying the p- and (p-1)-link conditions can be contracted without disturbing the p-dimensional homology group. (ii) For relative homology groups, the (p-1)-, and the (p-2)-link conditions suffice to guarantee that the contraction does not introduce any new class in any of the resulting relative homology groups, though some of the existing classes can be destroyed. Unfortunately, the surjection in relative homolgy groups does not guarantee that no new relative torsion is created. (iii) For torsions, edges satisfying the p-link condition alone can be contracted without creating any new relative torsion and the p-link condition cannot be avoided. The results on relative homology and relative torsion are motivated by recent results on computing optimal homologous chains, which state that such problems can be solved by linear programming if the complex has no relative torsion. Edge contractions that do not introduce new relative torsions, can safely be availed in these contexts.
169 - Boris Shoikhet 2012
This preprint contains a part of the results of our earlier preprint arXiv:0907.3335v2 presented in a form suitable for journal publication. It covers a construction of a 2-fold monoidal structure on the category of tetramodules, with all necessary definitions, and an overview of the results of R.Taillefer [Tai1,2] on tetramodules and the Gerstenhaber-Schack cohomology [GS] (formerly served as Appendix in arXiv:0907.3335v2), as well as a computation of the Gerstenhaber-Schack cohomology for the free commutative cocommutative bialgebra S(V), for a V is a vector space.
We study track categories (i.e., groupoid-enriched categories) endowed with additive structure similar to that of a 1-truncated DG-category, except that composition is not assumed right linear. We show that if such a track category is right linear up to suitably coherent correction tracks, then it is weakly equivalent to a 1-truncated DG-category. This generalizes work of the first author on the strictification of secondary cohomology operations. As an application, we show that the secondary integral Steenrod algebra is strictifiable.
When $mathbb C$ is a semi-abelian category, it is well known that the category $mathsf{Grpd}(mathbb C)$ of internal groupoids in $mathbb C$ is again semi-abelian. The problem of determining whether the same kind of phenomenon occurs when the property of being semi-abelian is replaced by the one of being action representable (in the sense of Borceux, Janelidze and Kelly) turns out to be rather subtle. In the present article we give a sufficient condition for this to be true: in fact we prove that the category $mathsf{Grpd}(mathbb C)$ is a semi-abelian action representable algebraically coherent category with normalizers if and only if $mathbb C$ is a semi-abelian action representable algebraically coherent category with normalizers. This result applies in particular to the categories of internal groupoids in the categories of groups, Lie algebras and cocommutative Hopf algebras, for instance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا