Do you want to publish a course? Click here

Stress-dependent electrical transport and its universal scaling in granular materials

121   0   0.0 ( 0 )
 Added by Dorian Hanaor
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally and numerically examine stress-dependent electrical transport in granular materials to elucidate the origins of their universal dielectric response. The ac responses of granular systems under varied compressive loadings consistently exhibit a transition from a resistive plateau at low frequencies to a state of nearly constant loss at high frequencies. By using characteristic frequencies corresponding to the onset of conductance dispersion and measured direct-current resistance as scaling parameters to normalize the measured impedance, results of the spectra under different stress states collapse onto a single master curve, revealing well-defined stress-independent universality. In order to model this electrical transport, a contact network is constructed on the basis of prescribed packing structures, which is then used to establish a resistor-capacitor network by considering interactions between individual particles. In this model the frequency-dependent network response meaningfully reproduces the experimentally observed master curve exhibited by granular materials under various normal stress levels indicating this universal scaling behaviour is found to be governed by i) interfacial properties between grains and ii) the network configuration. The findings suggest the necessity of considering contact morphologies and packing structures in modelling electrical responses using network-based approaches.



rate research

Read More

We investigate the approach to catastrophic failure in a model porous granular material undergoing uniaxial compression. A discrete element computational model is used to simulate both the micro-structure of the material and the complex dynamics and feedbacks involved in local fracturing and the production of crackling noise. Under strain-controlled loading micro-cracks initially nucleate in an uncorrelated way all over the sample. As loading proceeds the damage localizes into a narrow damage band inclined at 30-45 degrees to the load direction. Inside the damage band the material is crushed into a poorly-sorted mixture of mainly fine powder hosting some larger fragments. The mass probability density distribution of particles in the damage zone is a power law of exponent 2.1, similar to a value of 1.87 inferred from observations of the length distribution of wear products (gouge) in natural and laboratory faults. Dynamic bursts of radiated energy, analogous to acoustic emissions observed in laboratory experiments on porous sedimentary rocks, are identified as correlated trails or cascades of local ruptures that emerge from the stress redistribution process. As the system approaches macroscopic failure consecutive bursts become progressively more correlated. Their size distribution is also a power law, with an equivalent Gutenberg-Richter b-value of 1.22 averaged over the whole test, ranging from 3 down to 0.5 at the time of failure, all similar to those observed in laboratory tests on granular sandstone samples. The formation of the damage band itself is marked by a decrease in the average distance between consecutive bursts and an emergent power law correlation integral of event locations with a correlation dimension of 2.55, also similar to those observed in the laboratory (between 2.75 and 2.25).
We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.
We give a statistical-mechanical theory of stress transmission in disordered arrays of rigid grains with perfect friction. Starting from the equations of microscopic force and torque balance we derive the fundamental equations of stress equilibrium. We illustrate the validity of our approach by solving the stress distribution of a homogeneous and isotropic array.
73 - P. Tegzes 2002
We have studied the dynamics of avalanching wet granular media in a rotating drum apparatus. Quantitative measurements of the flow velocity and the granular flux during avalanches allow us to characterize novel avalanche types unique to wet media. We also explore the details of viscoplastic flow (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at high rotation rates and novel robust pattern formation in the granular surface.
In this paper, we study the fully developed gravity-driven flow of granular materials between two inclined planes. We assume that the granular materials can be represented by a modified form of the second-grade fluid where the viscosity depends on the shear rate and volume fraction and the normal stress coefficients depend on the volume fraction. We also propose a new isotropic (spherical) part of the stress tensor which can be related to the compactness of the (rigid) particles. This new term ensures that the rigid solid particles cannot be compacted beyond a point, namely when the volume fraction has reached the critical/maximum packing value. The numerical results indicate that the newly proposed stress tensor has an obvious and physically meaningful effects on both the velocity and the volume fraction fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا