Do you want to publish a course? Click here

Reconciling observed and simulated stellar halo masses

128   0   0.0 ( 0 )
 Added by Robyn Sanderson
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use cosmological hydrodynamical simulations of Milky-Way-mass galaxies from the FIRE project to evaluate various strategies for estimating the mass of a galaxys stellar halo from deep, integrated-light images. We find good agreement with integrated-light observations if we mimic observational methods to measure the mass of the stellar halo by selecting regions of an image via projected radius relative to the disk scale length or by their surface density in stellar mass . However, these observational methods systematically underestimate the accreted stellar component, defined in our (and most) simulations as the mass of stars formed outside of the host galaxy, by up to a factor of ten, since the accreted component is centrally concentrated and therefore substantially obscured by the galactic disk. Furthermore, these observational methods introduce spurious dependencies of the estimated accreted stellar component on the stellar mass and size of galaxies that can obscure the trends in accreted stellar mass predicted by cosmological simulations, since we find that in our simulations the size and shape of the central galaxy is not strongly correlated with the assembly history of the accreted stellar halo. This effect persists whether galaxies are viewed edge-on or face-on. We show that metallicity or color information may provide a way to more cleanly delineate in observations the regions dominated by accreted stars. Absent additional data, we caution that estimates of the mass of the accreted stellar component from single-band images alone should be taken as lower limits.



rate research

Read More

The concentration - virial mass relation is a well-defined trend that reflects the formation of structure in an expanding Universe. Numerical simulations reveal a marked correlation that depends on the collapse time of dark matter halos and their subsequent assembly history. However, observational constraints are mostly limited to the massive end via X-ray emission of the hot diffuse gas in clusters. An alternative approach, based on gravitational lensing over galaxy scales, revealed an intriguingly high concentration at Milky Way-sized halos. This letter focuses on the robustness of these results by adopting a bootstrapping approach that combines stellar and lensing mass profiles. We also apply the identical methodology to simulated halos from EAGLE to assess any systematic. We bypass several shortcomings of ensemble type lens reconstruction and conclude that the mismatch between observed and simulated concentration-to-virial-mass relations are robust, and need to be explained either invoking a lensing-related sample selection bias, or a careful investigation of the evolution of concentration with assembly history. For reference, at a halo mass of $10^{12} M_odot$, the concentration of observed lenses is $c_{12}sim 40pm 5$, whereas simulations give $c_{12}sim 15pm1$.
A significant fraction of high redshift star-forming disc galaxies are known to host giant clumps, whose nature and role in galaxy evolution are yet to be understood. In this work we first present a new method based on neural networks to detect clumps in galaxy images. We use this method to detect clumps in the rest-frame optical and UV images of a complete sample of $sim1500$ star forming galaxies at $1<z<3$ in the CANDELS survey as well as in images from the VELA zoom-in cosmological simulations. We show that observational effects have a dramatic impact on the derived clump properties leading to an overestimation of the clump mass up to a factor of 10, which highlights the importance of fair comparisons between observations and simulations and the limitations of current HST data to study the resolved structure of distant galaxies. After correcting for these effects with a mixture density network, we estimate that the clump stellar mass function follows a power-law down to the completeness limit ($10^{7}$ solar masses) with the majority of the clumps being less massive than $10^9$ solar masses. This is in better agreement with recent gravitational lensing based measurements. The simulations explored in this work overall reproduce the shape of the observed clump stellar mass function and clumpy fractions when confronted under the same conditions, although they tend to lie in the lower limit of the confidence intervals of the observations. This agreement suggests that most of the observed clumps are formed in-situ.
239 - Aaron D. Ludlow 2021
We use idealized N-body simulations of equilibrium stellar disks embedded within course-grained dark matter haloes to study the effects of spurious collisional heating on disk structure and kinematics. Collisional heating drives a systematic increase in both the vertical and radial velocity dispersions of disk stars, and leads to an artificial increase in the thickness and size of disks; the effects are felt at all galacto-centric radii, and are not limited to the central regions of galaxies. We demonstrate that relaxation is driven primarily by the coarse-grained nature of simulated dark matter haloes, with bulges, stellar haloes and disk stars contributing little to disk heating. The integrated effects of collisional heating are determined primarily by the mass of dark matter particles (or equivalently by the number of particles at fixed halo mass), their local density and characteristic velocity, but are largely insensitive to the masses of stellar particles. This suggests that the effects of numerical relaxation on simulated galaxies can be reduced by increasing the mass resolution of the dark matter in cosmological simulations, with limited benefits from increasing the baryonic (or stellar) mass resolution. We provide a simple empirical model that accurately captures the effects of collisional heating on the vertical and radial velocity dispersions of disk stars, as well as on their scale heights. We use the model to assess the extent to which spurious collisional relaxation may have affected the structure of simulated galaxy disks. For example, we find that dark matter haloes resolved with fewer than $approx 10^6$ particles will collisionally heat stars near the stellar half-mass radius such that their vertical velocity dispersion increases by more than 10 per cent of the halos virial velocity in approximately one Hubble time.
We derive the stellar-to-halo mass relation (SHMR), namely $f_starpropto M_star/M_{rm h}$ versus $M_star$ and $M_{rm h}$, for early-type galaxies from their near-IR luminosities (for $M_star$) and the position-velocity distributions of their globular cluster systems (for $M_{rm h}$). Our individual estimates of $M_{rm h}$ are based on fitting a dynamical model with a distribution function expressed in terms of action-angle variables and imposing a prior on $M_{rm h}$ from the concentration-mass relation in the standard $Lambda$CDM cosmology. We find that the SHMR for early-type galaxies declines with mass beyond a peak at $M_starsim 5times 10^{10}M_odot$ and $M_{rm h}sim 10^{12}M_odot$ (near the mass of the Milky Way). This result is consistent with the standard SHMR derived by abundance matching for the general population of galaxies, and with previous, less robust derivations of the SHMR for early types. However, it contrasts sharply with the monotonically rising SHMR for late types derived from extended HI rotation curves and the same $Lambda$CDM prior on $M_{rm h}$ as we adopt for early types. The SHMR for massive galaxies varies more or less continuously, from rising to falling, with decreasing disc fraction and decreasing Hubble type. We also show that the different SHMRs for late and early types are consistent with the similar scaling relations between their stellar velocities and masses (Tully-Fisher and Faber-Jackson relations). Differences in the relations between the stellar and halo virial velocities account for the similarity of the scaling relations. We argue that all these empirical findings are natural consequences of a picture in which galactic discs are built mainly by smooth and gradual inflow, regulated by feedback from young stars, while galactic spheroids are built by a cooperation between merging, black-hole fuelling, and feedback from AGNs.
110 - C. C. Steidel 2016
We present a combined analysis of rest-frame far-UV (1000-2000 A) and rest-frame optical (3600-7000 A) composite spectra formed from very deep observations of a sample of 30 star-forming galaxies with z=2.4+/-0.1, selected to be representative of the full KBSS-MOSFIRE spectroscopic survey. Since the same massive stars are responsible for the observed FUV continuum and the excitation of the observed nebular emission, a self-consistent stellar population synthesis model must simultaneously match the details of the far-UV stellar+nebular continuum and-- when inserted as the excitation source in photoionization models-- account for all observed nebular emission line ratios. We find that only models including massive star binaries, having low stellar metallicity (Z_*/Z_{sun} ~ 0.1) but relatively high ionized gas-phase oxygen abundances (Z_{neb}/Z_{sun} ~ 0.5), can successfully match all of the observational constraints. We argue that this apparent discrepancy is naturally explained by highly super-solar O/Fe [4-5 times (O/Fe)_{sun}], expected for gas whose enrichment is dominated by the products of core-collapse supernovae. Once the correct ionizing spectrum is identified, photoionization models reproduce all of the observed strong emission line ratios, the direct T_e measurement of O/H, and allow accurate measurement of the gas-phase abundance ratios of N/O and C/O -- both of which are significantly sub-solar but, as for O/Fe, are in remarkable agreement with abundance patterns observed in Galactic thick disk, bulge, and halo stars with similar O/H. High nebular excitation is the rule at high-z (and rare at low-z) because of systematically shorter enrichment timescales (<<1 Gyr): low Fe/O environments produce harder (and longer-lived) stellar EUV spectra at a given O/H, enhanced by dramatic effects on the evolution of massive star binaries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا