Do you want to publish a course? Click here

Unsupervised Domain Adaptation for 3D Keypoint Estimation via View Consistency

83   0   0.0 ( 0 )
 Added by Xingyi Zhou
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image. Our key idea is to utilize the fact that predictions from different views of the same or similar objects should be consistent with each other. Such view consistency can provide effective regularization for keypoint prediction on unlabeled instances. In addition, we introduce a geometric alignment term to regularize predictions in the target domain. The resulting loss function can be effectively optimized via alternating minimization. We demonstrate the effectiveness of our approach on real datasets and present experimental results showing that our approach is superior to state-of-the-art general-purpose domain adaptation techniques.

rate research

Read More

Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain. Though many DA theories and algorithms have been proposed, most of them are tailored into classification settings and may fail in regression tasks, especially in the practical keypoint detection task. To tackle this difficult but significant task, we present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection. Inspired by the latest theoretical work, we first utilize an adversarial regressor to maximize the disparity on the target domain and train a feature generator to minimize this disparity. However, due to the high dimension of the output space, this regressor fails to detect samples that deviate from the support of the source. To overcome this problem, we propose two important ideas. First, based on our observation that the probability density of the output space is sparse, we introduce a spatial probability distribution to describe this sparsity and then use it to guide the learning of the adversarial regressor. Second, to alleviate the optimization difficulty in the high-dimensional space, we innovatively convert the minimax game in the adversarial training to the minimization of two opposite goals. Extensive experiments show that our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
Accurate real depth annotations are difficult to acquire, needing the use of special devices such as a LiDAR sensor. Self-supervised methods try to overcome this problem by processing video or stereo sequences, which may not always be available. Instead, in this paper, we propose a domain adaptation approach to train a monocular depth estimation model using a fully-annotated source dataset and a non-annotated target dataset. We bridge the domain gap by leveraging semantic predictions and low-level edge features to provide guidance for the target domain. We enforce consistency between the main model and a second model trained with semantic segmentation and edge maps, and introduce priors in the form of instance heights. Our approach is evaluated on standard domain adaptation benchmarks for monocular depth estimation and show consistent improvement upon the state-of-the-art.
Many existing approaches for unsupervised domain adaptation (UDA) focus on adapting under only data distribution shift and offer limited success under additional cross-domain label distribution shift. Recent work based on self-training using target pseudo-labels has shown promise, but on challenging shifts pseudo-labels may be highly unreliable, and using them for self-training may cause error accumulation and domain misalignment. We propose Selective Entropy Optimization via Committee Consistency (SENTRY), a UDA algorithm that judges the reliability of a target instance based on its predictive consistency under a committee of random image transformations. Our algorithm then selectively minimizes predictive entropy to increase confidence on highly consistent target instances, while maximizing predictive entropy to reduce confidence on highly inconsistent ones. In combination with pseudo-label based approximate target class balancing, our approach leads to significant improvements over the state-of-the-art on 27/31 domain shifts from standard UDA benchmarks as well as benchmarks designed to stress-test adaptation under label distribution shift.
Recent advances in unsupervised domain adaptation mainly focus on learning shared representations by global distribution alignment without considering class information across domains. The neglect of class information, however, may lead to partial alignment (or even misalignment) and poor generalization performance. For comprehensive alignment, we argue that the similarities across different features in the source domain should be consistent with that of in the target domain. Based on this assumption, we propose a new domain discrepancy metric, i.e., Self-similarity Consistency (SSC), to enforce the feature structure being consistent across domains. The renowned correlation alignment (CORAL) is proven to be a special case, and a sub-optimal measure of our proposed SSC. Furthermore, we also propose to mitigate the side effect of the partial alignment and misalignment by incorporating the discriminative information of the deep representations. Specifically, an embarrassingly simple and effective feature norm constraint is exploited to enlarge the discrepancy of inter-class samples. It relieves the requirements of strict alignment when performing adaptation, therefore improving the adaptation performance significantly. Extensive experiments on visual domain adaptation tasks demonstrate the effectiveness of our proposed SSC metric and feature discrimination approach.
The cardiothoracic ratio (CTR), a clinical metric of heart size in chest X-rays (CXRs), is a key indicator of cardiomegaly. Manual measurement of CTR is time-consuming and can be affected by human subjectivity, making it desirable to design computer-aided systems that assist clinicians in the diagnosis process. Automatic CTR estimation through chest organ segmentation, however, requires large amounts of pixel-level annotated data, which is often unavailable. To alleviate this problem, we propose an unsupervised domain adaptation framework based on adversarial networks. The framework learns domain invariant feature representations from openly available data sources to produce accurate chest organ segmentation for unlabeled datasets. Specifically, we propose a model that enforces our intuition that prediction masks should be domain independent. Hence, we introduce a discriminator that distinguishes segmentation predictions from ground truth masks. We evaluate our systems prediction based on the assessment of radiologists and demonstrate the clinical practicability for the diagnosis of cardiomegaly. We finally illustrate on the JSRT dataset that the semi-supervised performance of our model is also very promising.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا