No Arabic abstract
Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit coupling and its relaxation mechanism remained unknown. We show for the first time an increased spin-orbit coupling close to the charge neutrality point in graphene, where topological states are expected to appear. Single layer graphene encapsulated between the transition metal dichalcogenide WSe$_2$ and hBN is found to exhibit exceptional quality with mobilities as high as 100000 cm^2/V/s. At the same time clear weak anti-localization indicates strong spin-orbit coupling and a large spin relaxation anisotropy due to the presence of a dominating symmetric spin-orbit coupling is found. Doping dependent measurements show that the spin relaxation of the in-plane spins is largely dominated by a valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling plays a minor role in spin relaxation. The strong spin-valley coupling opens new possibilities in exploring spin and valley degree of freedom in graphene with the realization of new concepts in spin manipulation.
We investigate interlayer tunneling in heterostructures consisting of two tungsten diselenide (WSe2) monolayers with controlled rotational alignment, and separated by hexagonal boron nitride. In samples where the two WSe2 monolayers are rotationally aligned we observe resonant tunneling, manifested by a large conductance and negative differential resistance in the vicinity of zero interlayer bias, which stem from energy- and momentum-conserving tunneling. Because the spin-orbit coupling leads to coupled spin-valley degrees of freedom, the twist between the two WSe2 monolayers allows us to probe the conservation of spin-valley degree of freedom in tunneling. In heterostructures where the two WSe2 monolayers have a 180{deg} relative twist, such that the Brillouin zone of one layer is aligned with the time-reversed Brillouin zone of the opposite layer, the resonant tunneling between the layers is suppressed. These findings provide evidence that in addition to momentum, the spin-valley degree of freedom is also conserved in vertical transport.
We study spin-transport in bilayer-graphene (BLG), spin-orbit coupled to a tungsten di sulfide (WS$_2$) substrate, and measure a record spin lifetime anisotropy ~40-70, i.e. ratio between the out-of-plane $tau_{perp}$ and in-plane spin relaxation time $tau_{||}$. We control the injection and detection of in-plane and out-of-plane spins via the shape-anisotropy of the ferromagnetic electrodes. We estimate $tau_{perp}$ ~ 1-2 ns via Hanle measurements at high perpendicular magnetic fields and via a new tool we develop: Oblique Spin Valve measurements. Using Hanle spin-precession experiments we find a low $tau_{||}$ ~ 30 ps in the electron-doped regime which only weakly depends on the carrier density in the BLG and conductivity of the underlying WS$_2$, indicating proximity-induced spin-orbit coupling (SOC) in the BLG. Such high $tau_{perp}$ and spin lifetime anisotropy are clear signatures of strong spin-valley coupling for out-of-plane spins in BLG/WS$_2$ systems in the presence of SOC, and unlock the potential of BLG/transition metal dichalcogenide heterostructures for developing future spintronic applications.
The ultimate goal of spintronics is achieving electrically controlled coherent manipulation of the electron spin at room temperature to enable devices such as spin field-effect transistors. With conventional materials, coherent spin precession has been observed in the ballistic regime and at low temperatures only. However, the strong spin anisotropy and the valley character of the electronic states in 2D materials provide unique control knobs to manipulate spin precession. Here, by manipulating the anisotropic spin-orbit coupling in bilayer graphene by the proximity effect to WSe$_2$, we achieve coherent spin precession in the absence of an external magnetic field, even in the diffusive regime. Remarkably, the sign of the precessing spin polarization can be tuned by a back gate voltage and by a drift current. Our realization of a spin field-effect transistor at room temperature is a cornerstone for the implementation of energy-efficient spin-based logic.
We study the impacts of the magnetic field direction on the spin-manipulation and the spin-relaxation in a one-dimensional quantum dot with strong spin-orbit coupling. The energy spectrum and the corresponding eigenfunctions in the quantum dot are obtained exactly. We find that no matter how large the spin-orbit coupling is, the electric-dipole spin transition rate as a function of the magnetic field direction always has a $pi$ periodicity. However, the phonon-induced spin relaxation rate as a function of the magnetic field direction has a $pi$ periodicity only in the weak spin-orbit coupling regime, and the periodicity is prolonged to $2pi$ in the strong spin-orbit coupling regime.
Transition metal dichalcogenides (TMDCs) heterostructure with a type II alignment hosts unique interlayer excitons with the possibility of spin-triplet and spin-singlet states. However, the associated spectroscopy signatures remain elusive, strongly hindering the understanding of the Moire potential modulation of the interlayer exciton. In this work, we unambiguously identify the spin-singlet and spin-triplet interlayer excitons in the WSe2/MoSe2 hetero-bilayer with a 60-degree twist angle through the gate- and magnetic field-dependent photoluminescence spectroscopy. Both the singlet and triplet interlayer excitons show giant valley-Zeeman splitting between the K and K valleys, a result of the large Lande g-factor of the singlet interlayer exciton and triplet interlayer exciton, which are experimentally determined to be ~ 10.7 and ~ 15.2, respectively, in good agreement with theoretical expectation. The PL from the singlet and triplet interlayer excitons show opposite helicities, determined by the atomic registry. Helicity-resolved photoluminescence excitation (PLE) spectroscopy study shows that both singlet and triplet interlayer excitons are highly valley-polarized at the resonant excitation, with the valley polarization of the singlet interlayer exciton approaches unity at ~ 20 K. The highly valley-polarized singlet and triplet interlayer excitons with giant valley-Zeeman splitting inspire future applications in spintronics and valleytronics.