Do you want to publish a course? Click here

Improved Ahead-of-Time Compilation of Stack-Based JVM Bytecode on Resource-Constrained Devices

78   0   0.0 ( 0 )
 Added by Niels Reijers
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Many virtual machines exist for sensor nodes with only a few KB RAM and tens to a few hundred KB flash memory. They pack an impressive set of features, but suffer from a slowdown of one to two orders of magnitude compared to optimised native code, reducing throughput and increasing power consumption. Compiling bytecode to native code to improve performance has been studied extensively for larger devices, but the restricted resources on sensor nodes mean most modern techniques cannot be applied. Simply replacing bytecode instructions with predefined sequences of native instructions is known to improve performance, but produces code several times larger than the optimised C equivalent, limiting the size of programmes that can fit onto a device. This paper identifies the major sources of overhead resulting from this basic approach, and presents optimisations to remove most of the remaining performance overhead, and over half the size overhead, reducing them to 69% and 91% respectively. While this increases the size of the VM, the break-even point at which this fixed cost is compensated for is well within the range of memory available on a sensor device, allowing us to both improve performance and load more code on a device.



rate research

Read More

We present a set of rules for compiling a Dalvik bytecode program into a logic program with array constraints. Non-termination of the resulting program entails that of the original one, hence the techniques we have presented before for proving non-termination of constraint logic programs can be used for proving non-termination of Dalvik programs.
Recurrent neural networks (RNNs) have shown promising results in audio and speech processing applications due to their strong capabilities in modelling sequential data. In many applications, RNNs tend to outperform conventional models based on GMM/UBMs and i-vectors. Increasing popularity of IoT devices makes a strong case for implementing RNN based inferences for applications such as acoustics based authentication, voice commands, and edge analytics for smart homes. Nonetheless, the feasibility and performance of RNN based inferences on resources-constrained IoT devices remain largely unexplored. In this paper, we investigate the feasibility of using RNNs for an end-to-end authentication system based on breathing acoustics. We evaluate the performance of RNN models on three types of devices; smartphone, smartwatch, and Raspberry Pi and show that unlike CNN models, RNN models can be easily ported onto resource-constrained devices without a significant loss in accuracy.
Motivated by the fast adoption of WebAssembly, we propose the first functional pipeline to support the superoptimization of WebAssembly bytecode. Our pipeline works over LLVM and Souper. We evaluate our superoptimization pipeline with 12 programs from the Rosetta code project. Our pipeline improves the code section size of 8 out of 12 programs. We discuss the challenges faced in superoptimization of WebAssembly with two case studies.
We introduce a fully automated static analysis that takes a sequential Java bytecode program P as input and attempts to prove that there exists an infinite execution of P. The technique consists in compiling P into a constraint logic program P_CLP and in proving non-termination of P_CLP; when P consists of instructions that are exactly compiled into constraints, the non-termination of P_CLP entails that of P. Our approach can handle method calls; to the best of our knowledge, it is the first static approach for Java bytecode able to prove the existence of infinite recursions. We have implemented our technique inside the Julia analyser. We have compared the results of Julia on a set of 113 programs with those provided by AProVE and Invel, the only freely usable non-termination analysers comparable to ours that we are aware of. Only Julia could detect non-termination due to infinite recursion.
We present and evaluate a compiler from Prolog (and extensions) to JavaScript which makes it possible to use (constraint) logic programming to develop the client side of web applications while being compliant with current industry standards. Targeting JavaScript makes (C)LP programs executable in virtually every modern computing device with no additional software requirements from the point of view of the user. In turn, the use of a very high-level language facilitates the development of high-quality, complex software. The compiler is a back end of the Ciao system and supports most of its features, including its module system and its rich language extension mechanism based on packages. We present an overview of the compilation process and a detailed description of the run-time system, including the support for modular compilation into separate JavaScript code. We demonstrate the maturity of the compiler by testing it with complex code such as a CLP(FD) library written in Prolog with attributed variables. Finally, we validate our proposal by measuring the performance of some LP and CLP(FD) benchmarks running on top of major JavaScript engines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا