Dynamically tunable metamaterial analogue of electromagnetically induced transparency with graphene in the terahertz regime


Abstract in English

A novel mechanism to realize dynamically tunable electromagnetically induced transparency (EIT) analogue in the terahertz (THz) regime is proposed. By putting the electrically controllable monolayer graphene under the dark resonator, the amplitude of the EIT resonance in the metal-based metamaterial can be modulated substantially via altering the Fermi level of graphene. The amplitude modulation can be attributed to the change in the damping rate of the dark mode caused by the recombination effect of the conductive graphene. This work provides an alternative way to achieve tunable slow light effect and has potential applications in THz wireless communications.

Download