Do you want to publish a course? Click here

Light-induced switching to a Metastable Phase in a Layered Superconductor La$_{2-x}$Sr$_x$CuO$_4$ (x=0.15)

390   0   0.0 ( 0 )
 Added by Ryo Shimano
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated transient optical responses in an optimally-doped high-Tc superconductor La2-xSrxCuO4 (x=0.15) by using 800-nm optical pump and terahertz probe spectroscopy. With increasing the photoexcitation intensities, the Josephson plasma resonance shows a gradual redshift, indicating the suppression of superconductivity by the photoexcitation. With further increasing the photoexcitation intensities, a new longitudinal mode in the loss function spectrum appears and grows from the high energy side, accompanied by a new transverse mode as manifested in the conductivity spectrum. The observed spectra are described by the multilayer model with alternating interlayer Josephson couplings. The new longitudinal and transverse modes sustain much longer than several hundred picoseconds after the photoexcitation, indicating that the new metastable phase with possessing alternating interlayer Josephson couplings is induced by the strong photoexcitation.



rate research

Read More

Recently, several experiments on La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) challenged the Fermi liquid picture for overdoped cuprates, and stimulated intensive debates [1]. In this work, we study the magnetotransport phenomena in such systems based on the Fermi liquid assumption. The Hall coefficient $R_H$ and magnetoresistivity $rho_{xx}$ are investigated near the van Hove singularity $x_{tinytext{VHS}}approx0.2$ across which the Fermi surface topology changes from hole- to electron-like. Our main findings are: (1) $R_H$ depends on the magnetic field $B$ and drops from positive to negative values with increasing $B$ in the doping regime $x_{tinytext{VHS}}<xlesssim0.3$; (2) $rho_{xx}$ grows up as $B^2$ at small $B$ and saturates at large $B$, while in the transition regime a nearly linear behavior shows up. Our results can be further tested by future magnetotransport experiments in the overdoped LSCO.
We report the dynamics of the cuprate superconductor La$_{2-x}$Sr$_{x}$CuO$_4$ ($x = 0.14$) after intense photoexcitation utilizing near-infrared (800 nm) optical pump-terahertz probe spectroscopy. In the superconducting state at 5 K, we observed a redshift of the Josephson plasma resonance that sustains for hundreds of picoseconds after the photoexcitation, indicating the destruction of the $c$-axis superconducting coherence. We show that the metastable spectral features can be described by the photoinduced surface heating of the sample. We also demonstrate that the conventional analysis used to extract the spectra of the photoexcited surface region can give rise to artifacts in the nonequilibrium response.
We present results of inelastic light scattering experiments on single-crystalline La$_{2-x}$Sr$_{x}$CuO$_4$ in the doping range $0.00 le x=p le 0.30$ and Tl$_2$Ba$_2$CuO$_{6+delta}$ at $p=0.20$ and $p=0.24$. The main emphasis is placed on the response of electronic excitations in the antiferromagnetic phase, in the pseudogap range, in the superconducting state, and in the essentially normal metallic state at $x ge 0.26$, where no superconductivity could be observed. In most of the cases we compare B$_{1g}$ and B$_{2g}$ spectra which project out electronic properties close to $(pi,0)$ and $(pi/2, pi/2)$, respectively. In the channel of electron-hole excitations we find universal behavior in B$_{2g}$ symmetry as long as the material exhibits superconductivity at low temperature. In contrast, there is a strong doping dependence in B$_{1g}$ symmetry: (i) In the doping range $0.20 le p le 0.25$ we observe rapid changes of shape and temperature dependence of the spectra. (ii) In La$_{2-x}$Sr$_{x}$CuO$_4$ new structures appear for $x < 0.13$ which are superposed on the electron-hole continuum. The temperature dependence as well as model calculations support an interpretation in terms of charge-ordering fluctuations. For $x le 0.05$ the response from fluctuations disappears at B$_{1g}$ and appears at B$_{2g}$ symmetry in full agreement with the orientation change of stripes found by neutron scattering. While, with a grain of salt, the particle-hole continuum is universal for all cuprates the response from fluctuating charge order in the range $0.05 le p < 0.16$ is so far found only in La$_{2-x}$Sr$_{x}$CuO$_4$. We conclude that La$_{2-x}$Sr$_{x}$CuO$_4$ is close to static charge order and, for this reason, may have a suppressed $T_c$.
210 - D. Fu , D. Nicoletti , M. Fechner 2021
Interlayer transport in high-$T_C$ cuprates is mediated by superconducting tunneling across the CuO$_2$ planes. For this reason, the terahertz frequency optical response is dominated by one or more Josephson plasma resonances and becomes highly nonlinear at fields for which the tunneling supercurrents approach their critical value, $I_C$. These large terahertz nonlinearities are in fact a hallmark of superconducting transport. Surprisingly, however, they have been documented in La$_{2-x}$Ba$_x$CuO$_4$ also above $T_C$ for doping values near $x=1/8$, and interpreted as an indication of superfluidity in the stripe phase. Here, Electric Field Induced Second Harmonic (EFISH) is used to study the dynamics of time-dependent interlayer voltages when La$_{2-x}$Ba$_x$CuO$_4$ is driven with large-amplitude terahertz pulses, in search of other characteristic signatures of Josephson tunnelling in the normal state. We show that this method is sensitive to the voltage anomalies associated with 2$pi$ Josephson phase slips, which near $x=1/8$ are observed both below and above $T_C$. These results document a new regime of nonlinear transport that shares features of sliding charge-density-waves and superconducting phase dynamics.
199 - D. Nicoletti , D. Fu , O. Mehio 2018
Optical excitation of stripe-ordered La$_{2-x}$Ba$_x$CuO$_4$ has been shown to transiently enhance superconducting tunneling between the CuO$_2$ planes. This effect was revealed by a blue-shift, or by the appearance of a Josephson Plasma Resonance in the terahertz-frequency optical properties. Here, we show that this photo-induced state can be strengthened by the application of high external magnetic fields oriented along the c-axis. For a 7-Tesla field, we observe up to a ten-fold enhancement in the transient interlayer phase correlation length, accompanied by a two-fold increase in the relaxation time of the photo-induced state. These observations are highly surprising, since static magnetic fields suppress interlayer Josephson tunneling and stabilize stripe order at equilibrium. We interpret our data as an indication that optically-enhanced interlayer coupling in La$_{2-x}$Ba$_x$CuO$_4$ does not originate from a simple optical melting of stripes, as previously hypothesized. Rather, we speculate that the photo-induced state may emerge from activated tunneling between optically-excited stripes in adjacent planes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا