Do you want to publish a course? Click here

The Recurrent Nova Candidate M31N 1966-08a = 1968-10c is a Galactic Flare Star

105   0   0.0 ( 0 )
 Added by Allen Shafter
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A spectrum of the quiescent counterpart of the Recurrent Nova candidate M31N 1966-08a (= M31N 1968-10c) obtained with LRS2 on the Hobby-Eberly Telescope reveals the object to be a foreground Galactic dMe flare star, and not a nova in M31.



rate research

Read More

108 - N.P.M. Kuin , K.L. Page , P. Mroz 2019
We present a comprehensive review of all observations of the eclipsing recurrent Nova LMC 1968 in the Large Magellanic Cloud which was previously observed in eruption in 1968, 1990, 2002, 2010, and most recently in 2016. We derive a probable recurrence time of $6.2 pm 1.2$ years and provide the ephemerides of the eclipse. In the ultraviolet-optical-IR photometry the light curve shows high variability right from the first observation around two days after eruption. Therefore no colour changes can be substantiated. Outburst spectra from 2016 and 1990 are very similar and are dominated by H and He lines longward of 2000 Angstrom. Interstellar reddening is found to be E(B-V) = $0.07pm0.01$. The super soft X-ray luminosity is lower than the Eddington luminosity and the X-ray spectra suggest the mass of the WD is larger than 1.3 M$_odot$. Eclipses in the light curve suggest that the system is at high orbital inclination. On day four after the eruption a recombination wave was observed in Fe II ultraviolet absorption lines. Narrow line components are seen after day 6 and explained as being due to reionisation of ejecta from a previous eruption. The UV spectrum varies with orbital phase, in particular a component of the He II 1640 Angstrom emission line, which leads us to propose that early-on the inner WD Roche lobe might be filled with a bound opaque medium prior to the re-formation of an accretion disk. Both this medium and the ejecta can cause the delay in the appearance of the soft X-ray source.
Since its discovery in 2008, the Andromeda galaxy nova M31N 2008-12a has been observed in eruption every single year. This unprecedented frequency indicates an extreme object, with a massive white dwarf and a high accretion rate, which is the most promising candidate for the single-degenerate progenitor of a type-Ia supernova known to date. The previous three eruptions of M31N 2008-12a have displayed remarkably homogeneous multi-wavelength properties: (i) From a faint peak, the optical light curve declined rapidly by two magnitudes in less than two days; (ii) Early spectra showed initial high velocities that slowed down significantly within days and displayed clear He/N lines throughout; (iii) The supersoft X-ray source (SSS) phase of the nova began extremely early, six days after eruption, and only lasted for about two weeks. In contrast, the peculiar 2016 eruption was clearly different. Here we report (i) the considerable delay in the 2016 eruption date, (ii) the significantly shorter SSS phase, and (iii) the brighter optical peak magnitude (with a hitherto unobserved cusp shape). Early theoretical models suggest that these three different effects can be consistently understood as caused by a lower quiescence mass-accretion rate. The corresponding higher ignition mass caused a brighter peak in the free-free emission model. The less-massive accretion disk experienced greater disruption, consequently delaying re-establishment of effective accretion. Without the early refueling, the SSS phase was shortened. Observing the next few eruptions will determine whether the properties of the 2016 outburst make it a genuine outlier in the evolution of M31N 2008-12a.
The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption ten times, including yearly eruptions from 2008-2014. With a measured recurrence period of $P_mathrm{rec}=351pm13$ days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground and space-based follow-up programs. In this paper we present the 2015 detection; visible to near-infrared photometry and visible spectroscopy; and ultraviolet and X-ray observations from the Swift observatory. The LCOGT 2m (Hawaii) discovered the 2015 eruption, estimated to have commenced at Aug. $28.28pm0.12$ UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal short-lived emission from material with velocities $sim13000$ km s$^{-1}$, possibly collimated outflows. Photometric and spectroscopic observations of the eruption provide strong evidence supporting a red giant donor. An apparently stochastic variability during the early super-soft X-ray phase was comparable in amplitude and duration to past eruptions, but the 2013 and 2015 eruptions show evidence of a brief flux dip during this phase. The multi-eruption Swift/XRT spectra show tentative evidence of high-ionization emission lines above a high-temperature continuum. Following Henze et al. (2015a), the updated recurrence period based on all known eruptions is $P_mathrm{rec}=174pm10$ d, and we expect the next eruption of M31N 2008-12a to occur around mid-Sep. 2016.
165 - M. F. Bode 2009
We report combined optical and X-ray observations of nova M31N 2007-12b. Optical spectroscopy obtained 5 days after the 2007 December outburst shows evidence of very high ejection velocities (FWHM H$alpha simeq 4500$ km s$^{-1}$). In addition, Swift X-ray data show that M31N 2007-12b is associated with a Super-Soft Source (SSS) which appeared between 21 and 35 days post-outburst and turned off between then and day 169. Our analysis implies that $M_{rm WD} ga 1.3 $M$_{odot}$ in this system. The optical light curve, spectrum and X-ray behaviour are consistent with those of a recurrent nova. Hubble Space Telescope observations of the pre-outburst location of M31N 2007-12b reveal the presence of a coincident stellar source with magnitude and color very similar to the Galactic recurrent nova RS Ophiuchi at quiescence, where the red giant secondary dominates the emission. We believe that this is the first occasion on which a nova progenitor system has been identified in M31. However, the greatest similarities of outburst optical spectrum and SSS behaviour are with the supposed Galactic recurrent nova V2491 Cygni. A previously implied association of M31N 2007-12b with nova M31N 1969-08a is shown to be erroneous and this has important lessons for future searches for recurrent novae in extragalactic systems. Overall, we show that suitable complementary X-ray and optical observations can be used not only to identify recurrent nova candidates in M31, but also to determine subtypes and important physical parameters of these systems. Prospects are therefore good for extending studies of recurrent novae into the Local Group with the potential to explore in more detail such important topics as their proposed link to Type Ia Supernovae.
The 2008 discovery of an eruption of M31N 2008-12a began a journey on which the true nature of this remarkable recurrent nova continues to be revealed. M31N 2008-12a contains a white dwarf close to the Chandrasekhar limit, accreting at a high rate from its companion, and undergoes thermonuclear eruptions which are observed yearly and may even be twice as frequent. In this paper, we report on Hubble Space Telescope Space Telescope Imaging Spectrograph ultraviolet spectroscopy taken within days of the predicted 2015 eruption, coupled with Keck spectroscopy of the 2013 eruption. Together, this spectroscopy permits the reddening to be constrained to E(B-V) = 0.10 +/- 0.03. The UV spectroscopy reveals evidence for highly ionized, structured, and high velocity ejecta at early times. No evidence for neon is seen in these spectra however, but it may be that little insight can be gained regarding the composition of the white dwarf (CO vs ONe).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا