Real-time Egocentric Gesture Recognition on Mobile Head Mounted Displays


Abstract in English

Mobile virtual reality (VR) head mounted displays (HMD) have become popular among consumers in recent years. In this work, we demonstrate real-time egocentric hand gesture detection and localization on mobile HMDs. Our main contributions are: 1) A novel mixed-reality data collection tool to automatic annotate bounding boxes and gesture labels; 2) The largest-to-date egocentric hand gesture and bounding box dataset with more than 400,000 annotated frames; 3) A neural network that runs real time on modern mobile CPUs, and achieves higher than 76% precision on gesture recognition across 8 classes.

Download