We use methods for computing Picard numbers of reductions of K3 surfaces in order to study the decomposability of Jacobians over number fields and the variance of Mordell-Weil ranks of families of Jacobians over different ground fields. For example, we give examples of surfaces whose Picard numbers jump in rank at all primes of good reduction using Mordell-Weil groups of Jacobians and show that the genus of curves over number fields whose Jacobians are isomorphic to a product of elliptic curves satisfying certain reduction conditions is bounded. The isomorphism result addresses the number field analogue of some questions of Ekedahl and Serre on decomposability of Jacobians of curves into elliptic curves.