Do you want to publish a course? Click here

Self-normalized Cramer type moderate deviations for martingales

77   0   0.0 ( 0 )
 Added by Xiequan Fan
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Let $(xi_i,mathcal{F}_i)_{igeq1}$ be a sequence of martingale differences. Set $S_n=sum_{i=1}^nxi_i $ and $[ S]_n=sum_{i=1}^n xi_i^2.$ We prove a Cramer type moderate deviation expansion for $mathbf{P}(S_n/sqrt{[ S]_n} geq x)$ as $nto+infty.$ Our results partly extend the earlier work of [Jing, Shao and Wang, 2003] for independent random variables.



rate research

Read More

Let $(X _i)_{igeq1}$ be a stationary sequence. Denote $m=lfloor n^alpha rfloor, 0< alpha < 1,$ and $ k=lfloor n/m rfloor,$ where $lfloor a rfloor$ stands for the integer part of $a.$ Set $S_{j}^circ = sum_{i=1}^m X_{m(j-1)+i}, 1leq j leq k,$ and $ (V_k^circ)^2 = sum_{j=1}^k (S_{j}^circ)^2.$ We prove a Cramer type moderate deviation expansion for $mathbb{P}( sum_{j=1}^k S_{j}^circ /V_k^circ geq x)$ as $nto infty.$ Applications to mixing type sequences, contracting Markov chains, expanding maps and confidence intervals are discussed.
112 - Xiequan Fan , Qi-Man Shao 2021
Let $(Z_n)_{ngeq0}$ be a supercritical Galton-Watson process. Consider the Lotka-Nagaev estimator for the offspring mean. In this paper, we establish self-normalized Cram{e}r type moderate deviations and Berry-Esseens bounds for the Lotka-Nagaev estimator. The results are believed to be optimal or near optimal.
Let {(X_i,Y_i)}_{i=1}^n be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramer type moderate deviation theorem for the general self-normalized sum sum_{i=1}^n X_i/(sum_{i=1}^n Y_i^2)^{1/2}, which unifies and extends the classical Cramer (1938) theorem and the self-normalized Cramer type moderate deviation theorems by Jing, Shao and Wang (2003) as well as the further refined version by Wang (2011). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramer type moderate deviation theorems for one-dependent random variables, geometrically beta-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramer type moderate deviation theorems for self-normalized winsorized mean.
90 - Songqi Wu , Lingjie Kong 2021
We give a nonuniform Berry-Esseen bound for self-normalized martingales, which bridges the gap between the result of Haeusler (1988) and Fan and Shao (2018). The bound coincides with the nonuniform Berry-Esseen bound of Haeusler and Joos (1988) for standardized martingales. As a consequence, a Berry-Esseen bound is obtained.
A Cramer-type moderate deviation theorem quantifies the relative error of the tail probability approximation. It provides theoretical justification when the limiting tail probability can be used to estimate the tail probability under study. Chen Fang and Shao (2013) obtained a general Cramer-type moderate result using Steins method when the limiting was a normal distribution. In this paper, Cramer-type moderate deviation theorems are established for nonnormal approximation under a general Stein identity, which is satisfied via the exchangeable pair approach and Steins coupling. In particular, a Cramer-type moderate deviation theorem is obtained for the general Curie--Weiss model and the imitative monomer-dimer mean-field model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا