Do you want to publish a course? Click here

Efficient Computation of the Stochastic Behavior of Partial Sum Processes

63   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper the computational aspects of probability calculations for dynamical partial sum expressions are discussed. Such dynamical partial sum expressions have many important applications, and examples are provided in the fields of reliability, product quality assessment, and stochastic control. While these probability calculations are ostensibly of a high dimension, and consequently intractable in general, it is shown how a recursive integration methodology can be implemented to obtain exact calculations as a series of two-dimensional calculations. The computational aspects of the implementaion of this methodology, with the adoption of Fast Fourier Transforms, are discussed.



rate research

Read More

In an extension of Kendalls $tau$, Bergsma and Dassios (2014) introduced a covariance measure $tau^*$ for two ordinal random variables that vanishes if and only if the two variables are independent. For a sample of size $n$, a direct computation of $t^*$, the empirical version of $tau^*$, requires $O(n^4)$ operations. We derive an algorithm that computes the statistic using only $O(n^2log(n))$ operations.
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisticated Markov chain Monte Carlo (MCMC) method, the exchange algorithm (Murray et al., 2006), which requires simulations from the likelihood function at each iteration. The purpose of this paper is to consider an approach to dramatically reduce this computational overhead. To this end we introduce a novel class of algorithms which use realizations of the GRF model, simulated offline, at locations specified by a grid that spans the parameter space. This strategy speeds up dramatically the posterior inference, as illustrated on several examples. However, using the pre-computed graphs introduces a noise in the MCMC algorithm, which is no longer exact. We study the theoretical behaviour of the resulting approximate MCMC algorithm and derive convergence bounds using a recent theoretical development on approximate MCMC methods.
In this work we introduce a reduced-rank algorithm for Gaussian process regression. Our numerical scheme converts a Gaussian process on a user-specified interval to its Karhunen-Lo`eve expansion, the $L^2$-optimal reduced-rank representation. Numerical evaluation of the Karhunen-Lo`eve expansion is performed once during precomputation and involves computing a numerical eigendecomposition of an integral operator whose kernel is the covariance function of the Gaussian process. The Karhunen-Lo`eve expansion is independent of observed data and depends only on the covariance kernel and the size of the interval on which the Gaussian process is defined. The scheme of this paper does not require translation invariance of the covariance kernel. We also introduce a class of fast algorithms for Bayesian fitting of hyperparameters, and demonstrate the performance of our algorithms with numerical experiments in one and two dimensions. Extensions to higher dimensions are mathematically straightforward but suffer from the standard curses of high dimensions.
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function with the novelty of using approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo (SMC) methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.
In this paper, we introduce efficient ensemble Markov Chain Monte Carlo (MCMC) sampling methods for Bayesian computations in the univariate stochastic volatility model. We compare the performance of our ensemble MCMC methods with an improved version of a recent sampler of Kastner and Fruwirth-Schnatter (2014). We show that ensemble samplers are more efficient than this state of the art sampler by a factor of about 3.1, on a data set simulated from the stochastic volatility model. This performance gain is achieved without the ensemble MCMC sampler relying on the assumption that the latent process is linear and Gaussian, unlike the sampler of Kastner and Fruwirth-Schnatter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا