No Arabic abstract
Present and future high-precision radial-velocity spectrometers dedicated to the discovery of low-mass planets orbiting low-mass dwarfs need to focus on the best selected stars to make an efficient use of telescope time. In the framework of the preparation of the SPIRou Input Catalog, the CoolSnap program aims at screening M dwarfs in the solar neighborhood against binarity, rapid rotation, activity, ... To optimize the selection, the present paper describes the methods used to compute effective temperature, metallicity, projected rotation velocity of a large sample of 440 M dwarfs observed in the visible with the high-resolution spectro-polarimeter ESPaDOnS at CFHT. It also summarizes known and newly-discovered spectroscopic binaries, and stars known to belong to visual multiple systems. A calibration of the projected rotation velocity versus measured line widths for M dwarfs observed by the ESPaDOnS spectro-polarimeter is derived, and the resulting values are compared to equatorial rotation velocities deduced from rotation periods and radii. A comparison of the derived effective temperatures and metallicities with literature values is also conducted. Finally, the radial velocity uncertainty of each star in the sample is estimated, to narrow down the selection of stars to be included into the SPIRou Input Catalogue (SPIC).
Context. CARMENES is a stabilised, high-resolution, double-channel spectrograph at the 3.5 m Calar Alto telescope. It is optimally designed for radial-velocity surveys of M dwarfs with potentially habitable Earth-mass planets. Aims. We prepare a list of the brightest, single M dwarfs in each spectral subtype observable from the northern hemisphere, from which we will select the best planet-hunting targets for CARMENES. Methods. In this first paper on the preparation of our input catalogue, we compiled a large amount of public data and collected low-resolution optical spectroscopy with CAFOS at the 2.2 m Calar Alto telescope for 753 stars. We derived accurate spectral types using a dense grid of standard stars, a double least-squares minimisation technique, and 31 spectral indices previously defined by other authors. Additionally, we quantified surface gravity, metallicity, and chromospheric activity for all the stars in our sample. Results. We calculated spectral types for all 753 stars, of which 305 are new and 448 are revised. We measured pseudo-equivalent widths of Halpha for all the stars in our sample, concluded that chromospheric activity does not affect spectral typing from our indices, and tabulated 49 stars that had been reported to be young stars in open clusters, moving groups, and stellar associations. Of the 753 stars, two are new subdwarf candidates, three are T Tauri stars, 25 are giants, 44 are K dwarfs, and 679 are M dwarfs. Many of the 261 investigated dwarfs in the range M4.0-8.0 V are among the brightest stars known in their spectral subtype. Conclusions. This collection of low-resolution spectroscopic data serves as a candidate target list for the CARMENES survey and can be highly valuable for other radial-velocity surveys of M dwarfs and for studies of cool dwarfs in the solar neighbourhood.
Aims: We search for low-mass companions of M dwarfs and characterize their multiplicity fraction with the purpose of helping in the selection of the most appropriate targets for the CARMENES exoplanet survey. Methods: We obtained high-resolution images in the I band with the lucky imaging instrument FastCam at the 1.5 m Telescopio Carlos Sanchez for 490 mid- to late-M dwarfs. For all the detected binaries, we measured angular separations, position angles, and magnitude differences in the I band. We also calculated the masses of each individual component and estimated orbital periods, using the available magnitude and colour relations for M dwarfs and our own MJ-spectral type and mass-MI relations. To avoid biases in our sample selection, we built a volume-limited sample of M0.0-M5.0 dwarfs that is complete up to 86% within 14 pc. Results: From the 490 observed stars, we detected 80 companions in 76 systems, of which 30 are new discoveries. The multiplicity fraction in our observed sample is 16.7+-2.0% . In our volume-limited sample it is 19.5+-2.3% for angular separations of 0.2 to 5.0 arcsec (1.4-65.6 au), The distribution of the projected physical separations peaks at 2.5-7.5 au. For M0.0-M3.5 V primaries, our search is sensitive to mass ratios higher than 0.3. Binaries with projected physical separations shorter than 50 au tend to be of equal mass. For 26 of our systems, we estimated orbital periods shorter than 50 a, 10 of which are presented here for the first time. We measured variations in angular separation and position angle that are due to orbital motions in 17 of these systems. The contribution of binaries and multiples with angular separations shorter than 0.2 arcsec, longer than 5.0 arcsec, and of spectroscopic binaries identified from previous searches, although not complete, may increase the multiplicity fraction of M dwarfs in our volume-limited sample to at least 36%.
The relevance of M dwarfs in the search for potentially habitable Earth-sized planets has grown significantly in the last years. In our on-going effort to comprehensively and accurately characterise confirmed and potential planet-hosting M dwarfs, in particular for the CARMENES survey, we have carried out a comprehensive multi-band photometric analysis involving spectral energy distributions, luminosities, absolute magnitudes, colours, and spectral types, from which we have derived basic astrophysical parameters. We have carefully compiled photometry in 20 passbands from the ultraviolet to the mid-infrared, and combined it with the latest parallactic distances and close-multiplicity information, mostly from Gaia DR2, of a sample of 2479 K5V to L8 stars and ultracool dwarfs, including 2210 nearby, bright M dwarfs. For this, we made extensive use of Virtual Observatory tools. We have homogeneously computed accurate bolometric luminosities and effective temperatures of 1843 single stars, derived their radii and masses, studied the impact of metallicity, and compared our results with the literature. The over 40000 individually inspected magnitudes, together with the basic data and derived parameters of the stars, individual and averaged by spectral type, have been made public to the astronomical community. In addition, we have reported 40 new close multiple systems and candidates rho < 3.3 arcsec and 36 overluminous stars that are assigned to young Galactic populations. In the new era of exoplanet searches around M dwarfs via transit (e.g. TESS, PLATO) and radial velocity (e.g. CARMENES, NIRPS+HARPS), this work is of fundamental importance for stellar and therefore planetary parameter determination.
Based on optical high-resolution spectra obtained with CFHT/ESPaDOnS, we present new measurements of activity and magnetic field proxies of 442 low-mass K5-M7 dwarfs. The objects were analysed as potential targets to search for planetary-mass companions with the new spectropolarimeter and high-precision velocimeter, SPIRou. We have analysed their high-resolution spectra in an homogeneous way: circular polarisation, chromospheric features, and Zeeman broadening of the FeH infrared line. The complex relationship between these activity indicators is analysed: while no strong connection is found between the large-scale and small-scale magnetic fields, the latter relates with the non-thermal flux originating in the chromosphere. We then examine the relationship between various activity diagnostics and the optical radial-velocity jitter available in the literature, especially for planet host stars. We use this to derive for all stars an activity merit function (higher for quieter stars) with the goal of identifying the most favorable stars where the radial-velocity jitter is low enough for planet searches. We find that the main contributors to the RV jitter are the large-scale magnetic field and the chromospheric non-thermal emission. In addition, three stars (GJ 1289, GJ 793, and GJ 251) have been followed along their rotation using the spectropolarimetric mode, and we derive their magnetic topology. These very slow rotators are good representatives of future SPIRou targets. They are compared to other stars where the magnetic topology is also known. The poloidal component of the magnetic field is predominent in all three stars.
We present a detailed study of the kinematics of M dwarfs in the CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) input catalog. We have selected all M dwarfs with known parallactic distance or a good photometric distance estimation, precise proper motion in the literature or as determined by us, and radial velocity measurements. Using these parameters, we computed the M dwarfs galactic space motions (U, V, W). For the stars with U and V velocity components inside or near the boundaries that determine the young disk population, we have analyzed the possible membership in the classical moving groups and nearby loose associations with ages between 10 and 600 Ma. For the candidate members, we have compiled information available in the literature in order to constrain their membership by applying other age-dating methods.