Do you want to publish a course? Click here

Particle Physics with Gravitational Wave Detector Technology

115   0   0.0 ( 0 )
 Added by Christoph Englert
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Gravitational wave detector technology provides high-precision measurement apparatuses that, if combined with a modulated particle source, have the potential to measure and constrain particle interactions in a novel way, by measuring the pressure caused by scattering particle beams off the mirror material. Such a measurement does not rely on tagging a final state. This strategy has the potential to allow us to explore novel ways to constrain the presence of new interactions beyond the Standard Model of Particle Physics and provide additional constraints to poorly understood cross sections in the non-perturbative regime of QCD and Nuclear Physics, which are limiting factors of dark matter and neutrino physics searches. Beyond high-energy physics, if technically feasible, the proposed method to measure nucleon-nucleon interactions can lead to practical applications in material and medical sciences.



rate research

Read More

Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a standard scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei (Ge-76, Se-82, Te-130, and Xe-136), the standard scenario can be distinguished from a few nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.
113 - Horng Sheng Chia 2020
The direct detection of gravitational waves offers an exciting new window onto our Universe. At the same time, multiple observational evidence and theoretical considerations motivate the presence of physics beyond the Standard Model. In this thesis, we explore new ways of probing particle physics in the era of gravitational-wave astronomy. We focus on the signatures of ultralight bosons on the gravitational waves emitted by binary systems, demonstrating how binary black holes are novel detectors of this class of dark matter. We also discuss probes of other types of new physics through their finite-size imprints on gravitational waveforms, and examine the extent to which current template-bank searches could be used to detect these signals. In the first two chapters of this thesis, we review several aspects of gravitational-wave physics and particle physics at the weak coupling frontier; we hope the reader would find these reviews helpful in delving further into the literature and in their research.
We have studied three realistic benchmark geometries for a new far detector GAZELLE to search for long-lived particles at the superkekb accelerator in Tsukuba, Japan. The new detector would be housed in the same building as Belle II and observe the same $e^+e^-$ collisions. To assess the discovery reach of GAZELLE, we have investigated three new physics models that predict long-lived particles: heavy neutral leptons produced in tau lepton decays, axion-like particles produced in $B$ meson decays, and new scalars produced in association with a dark photon, as motivated by inelastic dark matter. We do not find significant gains in the new physics discovery reach of GAZELLE compared to the Belle II projections for the same final states. The main reasons are the practical limitations on the angular acceptance and size of GAZELLE, effectively making it at most comparable to Belle II, even though backgrounds in the far detector could be reduced to low rates. A far detector for long-lived particles would be well motivated in the case of a discovery by Belle II, since decays inside GAZELLE would facilitate studies of the decay products. Depending on the placement of GAZELLE, searches for light long-lived particles produced in the forward direction or signals of a confining hidden force could also benefit from such a far detector. Our general findings could help guide the design of far detectors at future electron-positron colliders such as the ILC, FCC-ee or CEPC.
170 - E. Lisi 2015
Theoretical estimates for the half life of neutrinoless double beta decay in candidate nuclei are affected by both particle and nuclear physics uncertainties, which may complicate the interpretation of decay signals or limits. We study such uncertainties and their degeneracies in the following context: three nuclei of great interest for large-scale experiments (76-Ge, 130-Te, 136-Xe), two representative particle physics mechanisms (light and heavy Majorana neutrino exchange), and a large set of nuclear matrix elements (NME), computed within the quasiparticle random phase approximation (QRPA). It turns out that the main theoretical uncertainties, associated with the effective axial coupling g_A and with the nucleon-nucleon potential, can be parametrized in terms of NME rescaling factors, up to small residuals. From this parametrization, the following QRPA features emerge: (1) the NME dependence on g_A is milder than quadratic; (2) in each of the two mechanisms, the relevant lepton number violating parameter is largely degenerate with the NME rescaling factors; and (3) the light and heavy neutrino exchange mechanisms are basically degenerate in the above three nuclei. We comment on the challenging theoretical and experimental improvements required to reduce such particle and nuclear physics uncertainties and their degeneracies.
One of the most puzzling questions in neutrino physics is the origin of the excess at 5 MeV in the reactor antineutrino spectrum. In this paper, we explore the excess via the reaction $^{13}$C$(overline{ u}, overline{ u}^prime n)^{12}$C$^*$ in organic scintillator detectors. The de-excitation of $^{12}$C$^*$ yields a prompt $4.4$ MeV photon, while the thermalization of the product neutron causes proton recoils, which in turn yield an additional prompt energy contribution with finite width. Together, these effects can mimic an inverse beta decay event with around 5 MeV energy. We consider several non-standard neutrino interactions to produce such a process and find that the parameter space preferred by Daya Bay is disfavored by measurements of neutrino-induced deuteron disintegration and coherent elastic neutrino-nucleus scattering. While non-minimal particle physics scenarios may be viable, a nuclear physics solution to this anomaly appears more appealing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا