Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures


Abstract in English

We demonstrate how machine-learning based interatomic potentials can be used to model guest atoms in host structures. Specifically, we generate Gaussian approximation potential (GAP) models for the interaction of lithium atoms with graphene, graphite, and disordered carbon nanostructures, based on reference density-functional theory (DFT) data. Rather than treating the full Li--C system, we demonstrate how the energy and force differences arising from Li intercalation can be modeled and then added to a (prexisting and unmodified) GAP model of pure elemental carbon. Furthermore, we show the benefit of using an explicit pair potential fit to capture effective Li--Li interactions, to improve the performance of the GAP model. This provides proof-of-concept for modeling guest atoms in host frameworks with machine-learning based potentials, and in the longer run is promising for carrying out detailed atomistic studies of battery materials.

Download