On a renormalizable class of gauge fixings for the gauge invariant operator $A_{min }^{2}$


Abstract in English

The dimension two gauge invariant non-local operator $A_{min }^{2}$, obtained through the minimization of $int d^4x A^2$ along the gauge orbit, allows to introduce a non-local gauge invariant configuration $A^h_mu$ which can be employed to built up a class of Euclidean massive Yang-Mills models useful to investigate non-perturbative infrared effects of confining theories. A fully local setup for both $A_{min }^{2}$ and $A^{h}_mu$ can be achieved, resulting in a local and BRST invariant action which shares similarities with the Stueckelberg formalism. Though, unlike the case of the Stueckelberg action, the use of $A_{min }^{2}$ gives rise to an all orders renormalizable action, a feature which will be illustrated by means of a class of covariant gauge fixings which, as much as t Hoofts $R_zeta$-gauge of spontaneously broken gauge theories, provide a mass for the Stueckelberg field.

Download