No Arabic abstract
We use the SDSS-Gaia Catalogue to identify six new pieces of halo substructure. SDSS-Gaia is an astrometric catalogue that exploits SDSS data release 9 to provide first epoch photometry for objects in the Gaia source catalogue. We use a version of the catalogue containing $245,316$ stars with all phase space coordinates within a heliocentric distance of $sim 10$ kpc. We devise a method to assess the significance of halo substructures based on their clustering in velocity space. The two most substantial structures are multiple wraps of a stream which has undergone considerable phase mixing (S1, with 94 members) and a kinematically cold stream (S2, with 61 members). The member stars of S1 have a median position of ($X,Y,Z$) = ($8.12, -0.22, 2.75$) kpc and a median metallicity of [Fe/H] $= -1.78$. The stars of S2 have median coordinates ($X,Y,Z$) = ($8.66, 0.30, 0.77$) kpc and a median metallicity of [Fe/H] $= -1.91$. They lie in velocity space close to some of the stars in the stream reported by Helmi et al. (1999). By modelling, we estimate that both structures had progenitors with virial masses $approx 10^{10} M_odot$ and infall times $gtrsim 9$ Gyr ago. Using abundance matching, these correspond to stellar masses between $10^6$ and $10^7 M_odot$. These are somewhat larger than the masses inferred through the mass-metallicity relation by factors of 5 to 15. Additionally, we identify two further substructures (S3 and S4 with 55 and 40 members) and two clusters or moving groups (C1 and C2 with 24 and 12) members. In all 6 cases, clustering in kinematics is found to correspond to clustering in both configuration space and metallicity, adding credence to the reliability of our detections.
We identify a halo substructure in the Tycho Gaia Astrometric Solution (TGAS) dataset, cross-matched with the RAVE-on data release. After quality cuts, the stars with large radial action ($J_R > 800$ kms$^{-1}$ kpc) are extracted. A subset of these stars is clustered in longitude and velocity and can be selected with further cuts. The 14 stars are centered on $(X,Y,Z) approx (9.0,-1.0,-0.6)$ kpc and form a coherently moving structure in the halo with median $(v_R,v_phi,v_z) = (167.33,0.86,-94.85)$ kms$^{-1}$. They are all metal-poor giants with median [Fe/H] $=-0.83$. To guard against the effects of distance errors, we compute spectrophotometric distances for the 8 out of 14 stars where this is possible. We find that 6 of the stars are still comoving. These 6 stars also have a much tighter [Fe/H] distribution $sim -0.7$ with one exception ([Fe/H] = -2.12). We conclude that the existence of the comoving cluster is stable against changes in distance estimation and conjecture that this is the dissolving remnant of a long-ago accreted globular cluster.
We construct a new sample of ~1700 solar neighbourhood halo subdwarfs from the Sloan Digital Sky Survey, selected using a reduced proper motion diagram. Radial velocities come from the SDSS spectra and proper motions from the light-motion curve catalogue of Bramich et al. (2008). Using a photometric parallax relation to estimate distances gives us the full phase-space coordinates. Typical velocity errors are in the range 30-50 km/s. This halo sample is one of the largest constructed to-date and the disc contamination is at a level of < 1 per cent. This enables us to calculate the halo velocity dispersion to excellent accuracy. We find that the velocity dispersion tensor is aligned in spherical polar coordinates and that (sigma_r, sigma_phi, sigma_theta) = (143 pm 2, 82 pm 2, 77 pm 2) km/s. The stellar halo exhibits no net rotation, although the distribution of v_phi shows tentative evidence for asymmetry. The kinematics are consistent with a mildly flattened stellar density falling with distance like r^{-3.75}. Using the full phase-space coordinates, we look for signs of kinematic substructure in the stellar halo. We find evidence for four discrete overdensities localised in angular momentum and suggest that they may be possible accretion remnants. The most prominent is the solar neighbourhood stream previously identified by Helmi et al. (1999), but the remaining three are new. One of these overdensities is potentially associated with a group of four globular clusters (NGC5466, NGC6934, M2 and M13) and raises the possibility that these could have been accreted as part of a much larger progenitor.
We have detected stellar halo streams in the solar neighborhood using data from the 7th public data release of the Sloan Digital Sky Survey (SDSS), which includes the directed stellar program SEGUE: Sloan Extension For Galactic Understanding and Exploration. In order to derive distances to each star, we used the metallicity-dependent photometric parallax relation from Ivezic et al. (2008) for which we examine and quantify the accuracy. Our final sample consists of 22,321 nearby (d < 2 kpc), metal-poor ([Fe/H] < -0.5) main-sequence stars with 6D estimates of position and space velocity. We characterize the orbits of these stars through suitable kinematic proxies for their effective integrals of motion, angular momentum, eccentricity, and orbital polar angle and compare the observed distribution to expectations from a smooth distribution in four [Fe/H] bins. On this basis we identify at least five significant phase-space overdensities of stars on very similar orbits in the solar neighborhood to which we can assign unambiguously peaked [Fe/H] distributions. Three of them have been identified previously, including the halo stream discovered by Helmi et al. (1999) at a significance level of 12.0. In addition, we find at least two new genuine halo streams, judged by their kinematics and [Fe/H], at significance levels of 2.9 and 4.8, respectively. For one stream the stars even show coherence in configuration space, matching a spatial overdensity of stars found by Juric et al. (2008) at (R,z) approx (9.5,0.8) kpc. Our results demonstrate the practical power of our search method to detect substructure in the phase-space distribution of nearby stars without making a-priori assumptions about the detailed form of the gravitational potential.
Tidal debris from infalling satellites can leave observable structure in the phase-space distribution of the Galactic halo. Such substructure can be manifest in the spatial and/or velocity distributions of the stars in the halo. This paper focuses on a class of substructure that is purely kinematic in nature, with no accompanying spatial features. To study its properties, we use a simulated stellar halo created by dynamically populating the Via Lactea II high-resolution N-body simulation with stars. A significant fraction of the stars in the inner halo of Via Lactea share a common speed and metallicity, despite the fact that they are spatially diffuse. We argue that this kinematic substructure is a generic feature of tidal debris from older mergers and may explain the detection of radial-velocity substructure in the inner halo made by the Sloan Extension for Galactic Understanding and Exploration. The GAIA satellite, which will provide the proper motions of an unprecedented number of stars, should further characterize the kinematic substructure in the inner halo. Our study of the Via Lactea simulation suggests that the stellar halo can be used to map the speed distribution of the local dark-matter halo, which has important consequences for dark-matter direct-detection experiments.
We study the properties of the dark matter component of the radially anisotropic stellar population recently identified in the Gaia data, using magneto-hydrodynamical simulations of Milky Way-like halos from the Auriga project. We identify 10 simulated galaxies that approximately match the rotation curve and stellar mass of the Milky Way. Four of these have an anisotropic stellar population reminiscent of the Gaia structure. We find an anti-correlation between the dark matter mass fraction of this population in the Solar neighbourhood and its orbital anisotropy. We estimate the local dark matter density and velocity distribution for halos with and without the anisotropic stellar population, and use them to simulate the signals expected in future xenon and germanium direct detection experiments. We find that a generalized Maxwellian distribution fits the dark matter halo integrals of the Milky Way-like halos containing the radially anisotropic stellar population. For dark matter particle masses below approximately 10 GeV, direct detection exclusion limits for the simulated halos with the anisotropic stellar population show a mild shift towards smaller masses compared to the commonly adopted Standard Halo Model.