Homogeneous Nonrelativistic Geometries as Coset Spaces


Abstract in English

We generalize the coset procedure of homogeneous spacetimes in (pseudo-)Riemannian geometry to non-Lorentzian geometries. These are manifolds endowed with nowhere vanishing invertible vielbeins that transform under local non-Lorentzian tangent space transformations. In particular, we focus on nonrelativistic symmetry algebras that give rise to (torsional) Newton-Cartan geometries, for which we demonstrate how the Newton-Cartan metric complex is determined by degenerate co- and contravariant symmetric bilinear forms on the coset. In specific cases, we also show the connection of the resulting nonrelativistic coset spacetimes to pseudo-Riemannian cosets via Inonu-Wigner contraction of relativistic algebras as well as null reduction. Our construction is of use for example when considering limits of the AdS/CFT correspondence in which nonrelativistic spacetimes appear as gravitational backgrounds for nonrelativistic string or gravity theories.

Download