Do you want to publish a course? Click here

Merger-Induced Metallicity Dilution in Cosmological Galaxy Formation Simulations

125   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observational studies have revealed that galaxy pairs tend to have lower gas-phase metallicity than isolated galaxies. This metallicity deficiency can be caused by inflows of low-metallicity gas due to the tidal forces and gravitational torques associated with galaxy mergers, diluting the metal content of the central region. In this work we demonstrate that such metallicity dilution occurs in state-of-the-art cosmological simulations of galaxy formation. We find that the dilution is typically 0.1 dex for major mergers, and is noticeable at projected separations smaller than $40$ kpc. For minor mergers the metallicity dilution is still present, even though the amplitude is significantly smaller. Consistent with previous analysis of observed galaxies we find that mergers are outliers from the emph{fundamental metallicity relation}, with deviations being larger than expected for a Gaussian distribution of residuals. Our large sample of mergers within full cosmological simulations also makes it possible to estimate how the star formation rate enhancement and gas consumption timescale behave as a function of the merger mass ratio. We confirm that strong starbursts are likely to occur in major mergers, but they can also arise in minor mergers if more than two galaxies are participating in the interaction, a scenario that has largely been ignored in previous work based on idealised isolated merger simulations.



rate research

Read More

237 - Mark Vogelsberger 2019
Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a variety of physical processes over an enormous range of scales. A better understanding of the physics relevant for shaping galaxies, improved numerical methods, and increased computing power have led to simulations that can reproduce a large number of observed galaxy properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challenging due to the large array of physical processes affecting this matter component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.
181 - Maria E. De Rossi 2015
The evolution of the metal content of galaxies and its relations to other global properties [such as total stellar mass (M*), circular velocity, star formation rate (SFR), halo mass, etc.] provides important constraints on models of galaxy formation. Here we examine the evolution of metallicity scaling relations of simulated galaxies in the Galaxies-Intergalactic Medium Interaction Calculation suite of cosmological simulations. We make comparisons to observations of the correlation of gas-phase abundances with M* (the mass-metallicity relation, MZR), as well as with both M* and SFR or gas mass fraction (the so-called 3D fundamental metallicity relations, FMRs). The simulated galaxies follow the observed local MZR and FMRs over an order of magnitude in M*, but overpredict the metallicity of massive galaxies (log M* > 10.5), plausibly due to inefficient feedback in this regime. We discuss the origin of the MZR and FMRs in the context of galactic outflows and gas accretion. We examine the evolution of mass-metallicity relations defined using different elements that probe the three enrichment channels (SNII, SNIa, and AGB stars). Relations based on elements produced mainly by SNII evolve weakly, whereas those based on elements produced preferentially in SNIa/AGB exhibit stronger evolution, due to the longer timescales associated with these channels. Finally, we compare the relations of central and satellite galaxies, finding systematically higher metallicities for satellites, as observed. We show this is due to the removal of the metal poor gas reservoir that normally surrounds galaxies and acts to dilute their gas-phase metallicity (via cooling/accretion onto the disk), but is lost due to ram pressure stripping for satellites.
We present cosmological zoom-in hydro-dynamical simulations for the formation of disc galaxies, implementing dust evolution and dust promoted cooling of hot gas. We couple an improved version of our previous treatment of dust evolution, which adopts the two-size approximation to estimate the grain size distribution, with the MUPPI star formation and feedback sub-resolution model. Our dust evolution model follows carbon and silicate dust separately. To distinguish differences induced by the chaotic behaviour of simulations from those genuinely due to different simulation set-up, we run each model six times, after introducing tiny perturbations in the initial conditions. With this method, we discuss the role of various dust-related physical processes and the effect of a few possible approximations adopted in the literature. Metal depletion and dust cooling affect the evolution of the system, causing substantial variations in its stellar, gas and dust content. We discuss possible effects on the Spectral Energy Distribution of the significant variations of the size distribution and chemical composition of grains, as predicted by our simulations during the evolution of the galaxy. We compare dust surface density, dust-to-gas ratio and small-to-big grain mass ratio as a function of galaxy radius and gas metallicity predicted by our fiducial run with recent observational estimates for three disc galaxies of different masses. The general agreement is good, in particular taking into account that we have not adjusted our model for this purpose.
As galaxy formation and evolution over long cosmic time-scales depends to a large degree on the structure of the universe, the assembly history of galaxies is potentially a powerful approach for learning about the universe itself. In this paper we examine the merger history of dark matter halos based on the Extended Press-Schechter formalism as a function of cosmological parameters, redshift and halo mass. We calculate how major halo mergers are influenced by changes in the cosmological values of $Omega_{rm m}$, $Omega_{Lambda}$, $sigma_{8}$, the dark matter particle temperature (warm vs. cold dark matter), and the value of a constant and evolving equation of state parameter $w(z)$. We find that the merger fraction at a given halo mass varies by up to a factor of three for halos forming under the assumption of Cold Dark Matter, within different underling cosmological parameters. We find that the current measurements of the merger history, as measured through observed galaxy pairs as well as through structure, are in agreement with the concordance cosmology with the current best fit giving $1 - Omega_{rm m} = Omega_{rm Lambda} = 0.84^{+0.16}_{-0.17}$. To obtain a more accurate constraint competitive with recently measured cosmological parameters from Planck and WMAP requires a measured merger accuracy of $delta f_{rm m} sim 0.01$, implying surveys with an accurately measured merger history over 2 - 20 deg$^{2}$, which will be feasible with the next generation of imaging and spectroscopic surveys such as Euclid and LSST.
We present the McMaster Unbiased Galaxy Simulations (MUGS), the first 9 galaxies of an unbiased selection ranging in total mass from 5$times10^{11}$ M$_odot$ to 2$times10^{12}$ M$_odot$ simulated using n-body smoothed particle hydrodynamics (SPH) at high resolution. The simulations include a treatment of low temperature metal cooling, UV background radiation, star formation, and physically motivated stellar feedback. Mock images of the simulations show that the simulations lie within the observed range of relations such as that between color and magnitude and that between brightness and circular velocity (Tully-Fisher). The greatest discrepancy between the simulated galaxies and observed galaxies is the high concentration of material at the center of the galaxies as represented by the centrally peaked rotation curves and the high bulge-to-total ratios of the simulations determined both kinematically and photometrically. This central concentration represents the excess of low angular momentum material that long has plagued morphological studies of simulated galaxies and suggests that higher resolutions and a more accurate description of feedback will be required to simulate more realistic galaxies. Even with the excess central mass concentrations, the simulations suggest the important role merger history and halo spin play in the formation of disks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا