No Arabic abstract
Observation shows that the velocities of stars grow by approximately 2 to 3 orders of magnitude when the distances from the centers of the galaxies are in the range of $0.5$ kpc to $82.3$ kpc, before they begin to tend to a constant value. Up to know, the reason for this behavior is still a matter for debate. In this work, we propose a model which adequately describes this unusual behavior using a (nearly) cylindrical symmetrical solution in the framework of a scalar-tensor-like (the Brans-Dicke model) theory of gravity.
We investigate a braneworld model generated by a global monopole in the context of Brans-Dicke gravity. After solving the dynamical equations we found a model capable to alleviate the so-called hierarchy problem. The obtained framework is described by a hybrid compactification scheme endowed with a seven-dimensional spacetime, in which the brane has four non-compact dimensions and two curled extra dimensions. The relevant aspects of the resulting model are studied and the requirements to avoid the well known seesaw-like behavior are discussed. We show that under certain conditions it is possible to circumvent such a pathological behavior that characterizes most of the models that exhibit hybrid compactification. Lastly, we deepen our analysis by considering possible extensions of this model to a setup with multiple branes and orbifold-like extra dimension. For this, we compute the consistency conditions to be obeyed by this more general configuration as predicted by the braneworld sum rules formalism. This study indicates the possibility of exclusively positive brane tensions in the model.
Memory effects are studied in the simplest scalar-tensor theory, the Brans--Dicke (BD) theory. To this end, we introduce, in BD theory, novel Kundt spacetimes (without and with gyratonic terms), which serve as backgrounds for the ensuing analysis on memory. The BD parameter $omega$ and the scalar field ($phi$) profile, expectedly, distinguishes between different solutions. Choosing specific localised forms for the free metric functions $H(u)$ (related to the wave profile) and $J(u)$ (the gyraton) we obtain displacement memory effects using both geodesics and geodesic deviation. An interesting and easy-to-understand exactly solvable case arises when $omega=-2$ (with $J(u)$ absent) which we discuss in detail. For other $omega$ (in the presence of $J$ or without), numerically obtained geodesics lead to results on displacement memory which appear to match qualitatively with those found from a deviation analysis. Thus, the issue of how memory effects in BD theory may arise and also differ from their GR counterparts, is now partially addressed, at least theoretically, within the context of this new class of Kundt geometries.
We present an explicit detailed theoretical and observational investigation of an anisotropic massive Brans-Dicke (BD) gravity extension of the standard $Lambda$CDM model, wherein the extension is characterized by two additional degrees of freedom; the BD parameter, $omega$, and the present day density parameter corresponding to the shear scalar, $Omega_{sigma^2,0}$. The BD parameter, determining the deviation from general relativity (GR), by alone characterizes both the dynamics of the effective dark energy (DE) and the redshift dependence of the shear scalar. These two affect each other depending on $omega$, namely, the shear scalar contributes to the dynamics of the effective DE, and its anisotropic stress --which does not exist in scalar field models of DE within GR-- controls the dynamics of the shear scalar deviating from the usual $propto(1+z)^6$ form in GR. We mainly confine the current work to non-negative $omega$ values as it is the right sign --theoretically and observationally-- for investigating the model as a correction to the $Lambda$CDM. By considering the current cosmological observations, we find that $omegagtrsim 250$, $Omega_{sigma^2,0}lesssim 10^{-23}$ and the contribution of the anisotropy of the effective DE to this value is insignificant. We conclude that the simplest anisotropic massive BD gravity extension of the standard $Lambda$CDM model exhibits no significant deviations from it all the way to the Big Bang Nucleosynthesis. We also point out the interesting features of the model in the case of negative $omega$ values; for instance, the constraints on $Omega_{sigma^2,0}$ could be relaxed considerably, the values of $omegasim-1$ (relevant to string theories) predict dramatically different dynamics for the expansion anisotropy.
Since the evidence for an accelerated universe and the gap of 70% in the total energy, collected by WMAP, search for alternatives for the general relativity is an important issue, for this theory is not suited for these new phenomena. A particular alternative is the Brans-Dicke theory which has being allowing inspiring results, for example, concerning k-essence type fields in 4 dimensions. However, this theory is almost unexplored in the context of the dimensional reduction of the theory in 3 dimensions. In this work, we address some problems in this dimensional reduction, namely, evaluation of the deceleration parameter of the universe described by the 3 dimensional Brans-Dicke with and without matter. In both cases, we see that it is not possible to consider the theory as a model of k-essence descrybing the dark energy, but it can be considered as descrybing the dark matter.
Using the Tsallis generalized entropy, holographic hypothesis and also considering the Hubble horizon as the IR cutoff, we build a holographic model for dark energy and study its cosmological consequences in the Brans-Dicke framework. At first, we focus on a non-interacting universe, and thereinafter, we study the results of considering a sign-changeable interaction between the dark sectors of the cosmos. Our investigations show that, compared with the flat case, the power and freedom of the model in describing the cosmic evolution is significantly increased in the presence of the curvature. The stability analysis also indicates that, independent of the universe curvature, both the interacting and non-interacting cases are classically unstable. In fact, both the classical stability criterion and an acceptable behavior for the cosmos quantities, including the deceleration and density parameters as well as the equation of state, are not simultaneously obtainable.