A Search for deviations from the inverse square law of gravity at nm range using a pulsed neutron beam


Abstract in English

We describe an experimental search for deviations from the inverse square law of gravity at the nanometer length scale using neutron scattering from noble gases on a pulsed slow neutron beamline. By measuring the neutron momentum transfer ($q$) dependence of the differential cross section for xenon and helium and comparing to their well-known analytical forms, we place an upper bound on the strength of a new interaction as a function of interaction length $lambda$ which improves upon previous results in the region $lambda < 0.1,$nm, and remains competitive in the larger $lambda$ region. A pseudoexperimental simulation developed for this experiment and its role in the data analysis described. We conclude with plans for improving sensitivity in the larger $lambda$ region.

Download