Do you want to publish a course? Click here

Anomalous low-temperature enhancement of supercurrent in topological-insulator nanoribbon Josephson junctions: evidence for low-energy Andreev bound states

78   0   0.0 ( 0 )
 Added by Morteza Kayyalha
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report anomalous enhancement of the critical current at low temperatures in gate-tunable Josephson junctions made from topological insulator BiSbTeSe$_2$ nanoribbons with superconducting Nb electrodes. In contrast to conventional junctions, as a function of the decreasing temperature $T$, the increasing critical current $I_c$ exhibits a sharp upturn at a temperature $T_*$ around 20$%$ of the junction critical temperatures for several different samples and various gate voltages. The $I_c$ vs. $T$ demonstrates a short junction behavior for $T>T_*$, but crosses over to a long junction behavior for $T<T_*$ with an exponential $T$-dependence $I_c propto expbig(-k_B T/delta big)$, where $k_B$ is the Boltzmann constant. The extracted characteristic energy-scale $delta$ is found to be an order of magnitude smaller than the induced superconducting gap of the junction. We attribute the long-junction behavior with such a small $delta$ to low-energy Andreev bound states (ABS) arising from winding of the electronic wavefunction around the circumference of the topological insulator nanoribbon (TINR). Our TINR-based Josephson junctions with low-energy ABS are promising for future topologically protected devices that may host exotic phenomena such as Majorana fermions.



rate research

Read More

We have used Bi$_2$Se$_3$ nanoribbons, grown by catalyst-free Physical Vapor Deposition to fabricate high quality Josephson junctions with Al superconducting electrodes. In our devices we observe a pronounced reduction of the Josephson critical current density $J_c$ by reducing the width of the junction, which in our case corresponds to the width of the nanoribbon. Because the topological surface states extend over the entire circumference of the nanoribbon, the superconducting transport associated to them is carried by modes on both the top and bottom surfaces of the nanoribbon. We show that the $J_c$ reduction as a function of the nanoribbons width can be accounted for by assuming that only the modes travelling on the top surface contribute to the Josephson transport as we derive by geometrical consideration. This finding is of a great relevance for topological quantum circuitry schemes, since it indicates that the Josephson current is mainly carried by the topological surface states.
We report transport measurements on Josephson junctions consisting of Bi2Te3 topological insulator (TI) thin films contacted by superconducting Nb electrodes. For a device with junction length L = 134 nm, the critical supercurrent Ic can be modulated by an electrical gate which tunes the carrier type and density of the TI film. Ic can reach a minimum when the TI is near the charge neutrality regime with the Fermi energy lying close to the Dirac point of the surface state. In the p-type regime the Josephson current can be well described by a short ballistic junction model. In the n-type regime the junction is ballistic at 0.7 K < T < 3.8 K while for T < 0.7 K the diffusive bulk modes emerge and contribute a larger Ic than the ballistic model. We attribute the lack of diffusive bulk modes in the p-type regime to the formation of p-n junctions. Our work provides new clues for search of Majorana zero mode in TI-based superconducting devices.
208 - Juntao Song , Haiwen Liu , Jie Liu 2016
Using non-equilibrium Greens functions, we studied numerically the transport properties of a Josephson junction, superconductor-topological insulator-superconductor hybrid system. Our numerical calculation shows first that proximity-induced superconductivity is indeed observed in the edge states of a topological insulator adjoining two superconducting leads and second that the special characteristics of topological insulators endow the edge states with an enhanced proximity effect with a superconductor but do not forbid the bulk states to do the same. In a size-dependent analysis of the local current, it was found that a few residual bulk states can lead to measurable resistance, whereas because these bulk states spread over the whole sample, their contribution to the interference pattern is insignificant when the sample size is in the micrometer range. Based on these numerical results, it is concluded that the apparent disappearance of residual bulk states in the superconducting interference process as described in Ref. [onlinecite{HartNautrePhys2014f}] is just due to the effects of size: the contribution of the topological edge states outweighs that of the residual bulk states.
A Josephson supercurrent has been induced into the three-dimensional topological insulator Bi1.5Sb0.5Te1.7Se1.3. We show that the transport in Bi1.5Sb0.5Te1.7Se1.3 exfoliated flakes is dominated by surface states and that the bulk conductivity can be neglected at the temperatures where we study the proximity induced superconductivity. We prepared Josephson junctions with widths in the order of 40 nm and lengths in the order of 50 to 80 nm on several Bi1.5Sb0.5Te1.7Se1.3 flakes and measured down to 30 mK. The Fraunhofer patterns unequivocally reveal that the supercurrent is a Josephson supercurrent. The measured critical currents are reproducibly observed on different devices and upon multiple cooldowns, and the critical current dependence on temperature as well as magnetic field can be well explained by diffusive transport models and geometric effects.
The anomalous proximity effect in dirty superconducting junctions is one of most striking phenomena highlighting the profound nature of Majorana bound states and odd-frequency Cooper pairs in topological superconductors. Motivated by the recent experimental realization of planar topological Josephson junctions, we describe the anomalous proximity effect in a superconductor/semiconductor hybrid, where an additional dirty normal-metal segment is extended from a topological Josephson junction. The topological phase transition in the topological Josephson junction is accompanied by a drastic change in the low-energy transport properties of the attached dirty normal-metal. The quantization of the zero-bias differential conductance, which appears only in the topologically nontrivial phase, is caused by the penetration of the Majorana bound states and odd-frequency Cooper pairs into a dirty normal-metal segment. As a consequence, we propose a practical experiment for observing the anomalous proximity effect.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا