No Arabic abstract
Quantum coherence characterizes the non-classical feature of a single party system with respect to a local basis. Based on a recently introduced resource framework, coherence can be regarded as a resource and be systematically manipulated and quantified. Operationally, considering the projective measurement of the state in the computational basis, coherence quantifies the intrinsic randomness of the measurement outcome conditioned on all the other quantum systems. However, such a relation is only proven when randomness is characterized by the Von-Neumann entropy. In this work, we consider several recently proposed coherence measures and relate them to the general uncertainties of the projective measurement outcome conditioned on all the other systems. Our work thus provides a unified framework for redefining several coherence measures via general conditional entropies. Based on the relation, we numerically calculate the coherence measures via semi-definite programming. Furthermore, we discuss the operational meaning of the unified definition. Our result highlights the close relation between single partite coherence and bipartite quantum correlation.
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing condition in the Gibbs measure associated to their dynamics, via a quasi-factorization of the entropy in terms of the conditional entropy in some sub-$sigma$-algebras. In this work we analyze analogous quasi-factorization results in the quantum case. For that, we define the quantum conditional relative entropy and prove several quasi-factorization results for it. As an illustration of their potential, we use one of them to obtain a positive log-Sobolev constant for the heat-bath dynamics with product fixed point.
Based on the resource theory for quantifying the coherence of quantum channels, we introduce a new coherence quantifier for quantum channels via maximum relative entropy. We prove that the maximum relative entropy for coherence of quantum channels is directly related to the maximally coherent channels under a particular class of superoperations, which results in an operational interpretation of the maximum relative entropy for coherence of quantum channels. We also introduce the conception of sub-superchannels and sub-superchannel discrimination. For any quantum channels, we show that the advantage of quantum channels in sub-superchannel discrimination can be exactly characterized by the maximum relative entropy of coherence for quantum channels. Similar to the maximum relative entropy of coherence for channels, the robustness of coherence for quantum channels has also been investigated. We show that the maximum relative entropy of coherence for channels provides new operational interpretations of robustness of coherence for quantum channels and illustrates the equivalence of the dephasing-covariant superchannels, incoherent superchannels, and strictly incoherent superchannels in these two operational tasks.
Recently a new quantum generalization of the Renyi divergence and the corresponding conditional Renyi entropies was proposed. Here we report on a surprising relation between conditional Renyi entropies based on this new generalization and conditional Renyi entropies based on the quantum relative Renyi entropy that was used in previous literature. Our result generalizes the well-known duality relation H(A|B) + H(A|C) = 0 of the conditional von Neumann entropy for tripartite pure states to Renyi entropies of two different kinds. As a direct application, we prove a collection of inequalities that relate different conditional Renyi entropies and derive a new entropic uncertainty relation.
The Second Law of Thermodynamics states that the entropy of a closed system is non-decreasing. Discussing the Second Law in the quantum world poses new challenges and provides new opportunities, involving fundamental quantum-information-theoretic questions and novel quantum-engineered devices. In quantum mechanics, systems with an evolution described by a so-called unital quantum channel evolve with a non-decreasing entropy. Here, we seek the opposite, a system described by a non-unital and, furthermore, energy-conserving channel that describes a system whose entropy decreases with time. We propose a setup involving a mesoscopic four-lead scatterer augmented by a micro-environment in the form of a spin that realizes this goal. Within this non-unital and energy-conserving quantum channel, the micro-environment acts with two non-commuting operations on the system in an autonomous way. We find, that the process corresponds to a partial exchange or swap between the system and environment quantum states, with the systems entropy decreasing if the environments state is more pure. This entropy-decreasing process is naturally expressed through the action of a quantum Maxwell demon and we propose a quantum-thermodynamic engine with four qubits that extracts work from a single heat reservoir when provided with a reservoir of pure qubits. The special feature of this engine, which derives from the energy-conservation in the non-unital quantum channel, is its separation into two cycles, a working cycle and an entropy cycle, allowing to run this engine with no local waste heat.
A multi-slit interference experiment, with which-way detectors, in the presence of environment induced decoherence, is theoretically analyzed. The effect of environment is modeled via a coupling to a bath of harmonic oscillators. Through an exact analysis, an expression for $mathcal{C}$, a recently introduced measure of coherence, of the particle at the detecting screen is obtained as a function of the parameters of the environment. It is argued that the effect of decoherence can be quantified using the measured coherence value which lies between zero and one. For the specific case of two slits, it is shown that the decoherence time can be obtained from the measured value of the coherence, $mathcal{C}$, thus providing a novel way to quantify the effect of decoherence via direct measurement of quantum coherence. This would be of significant value in many current studies that seek to exploit quantum superpositions for quantum information applications and scalable quantum computation.