Do you want to publish a course? Click here

Variation of Non-reductive Geometric Invariant Theory

114   0   0.0 ( 0 )
 Added by Gergely Berczi
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The wall-and-chamber structure of the dependence of the reductive GIT quotient on the choice of linearisation is well known. In this article, we first give a brief survey of recent results in non-reductive GIT, which apply when the unipotent radical is graded. We then examine the dependence of these non-reductive quotients on the linearisation and an additional parameter, the choice of one-parameter subgroup grading the unipotent radical, and arrive at a picture similar to the reductive one.



rate research

Read More

The Green--Griffiths--Lang and Kobayashi hyperbolicity conjectures for generic hypersurfaces of polynomial degree are proved using intersection theory for non-reductive geometric invariant theoretic quotients and recent work of Riedl and Yang.
76 - Gergely Berczi 2020
We combine recently developed intersection theory for non-reductive geometric invariant theoretic quotients with equivariant localisation to prove a formula for Thom polynomials of Morin singularities. These formulas use only toric combinatorics of certain partition polyhedra, and our new approach circumvents the poorly understood Borel geometry of existing models.
235 - Eloise Hamilton 2021
We establish a method for calculating the Poincare series of moduli spaces constructed as quotients of smooth varieties by suitable non-reductive group actions; examples of such moduli spaces include moduli spaces of unstable vector or Higgs bundles on a smooth projective curve, with a Harder-Narasimhan type of length two. To do so, we first prove a result concerning the smoothness of fixed point sets for suitable non-reductive group actions on smooth varieties. This enables us to prove that quotients of smooth varieties by such non-reductive group actions, which can be constructed using Non-Reductive GIT via a sequence of blow-ups, have at worst finite quotient singularities. We conclude the paper by providing explicit formulae for the Poincare series of these non-reductive GIT quotients.
We determine the Waring ranks of all sextic binary forms using a Geometric Invariant Theory approach. In particular, we shed new light on a claim by E. B. Elliott at the end of the 19th century concerning the binary sextics with Waring rank 3.
Let $U$ be a graded unipotent group over the complex numbers, in the sense that it has an extension $hat{U}$ by the multiplicative group such that the action of the multiplicative group by conjugation on the Lie algebra of $U$ has all its weights strictly positive. Given any action of $U$ on a projective variety $X$ extending to an action of $hat{U}$ which is linear with respect to an ample line bundle on $X$, then provided that one is willing to replace the line bundle with a tensor power and to twist the linearisation of the action of $hat{U}$ by a suitable (rational) character, and provided an additional condition is satisfied which is the analogue of the condition in classical GIT that there should be no strictly semistable points for the action, we show that the $hat{U}$-invariants form a finitely generated graded algebra; moreover the natural morphism from the semistable subset of $X$ to the enveloping quotient is surjective and expresses the enveloping quotient as a geometric quotient of the semistable subset. Applying this result with $X$ replaced by its product with the projective line gives us a projective variety which is a geometric quotient by $hat{U}$ of an invariant open subset of the product of $X$ with the affine line and contains as an open subset a geometric quotient of a U-invariant open subset of $X$ by the action of $U$. Furthermore these open subsets of $X$ and its product with the affine line can be described using criteria similar to the Hilbert-Mumford criteria in classical GIT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا