Do you want to publish a course? Click here

Optimal Power Management for Failure Mode of MVDC Microgrids in All-Electric Ships

262   0   0.0 ( 0 )
 Added by Qimin Xu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Optimal power management of shipboard power system for failure mode (OPMSF) is a significant and challenging problem considering the safety of system and person. Many existing works focused on the transient-time recovery without consideration of the operating cost and the voyage plan. In this paper, the OPMSF problem is formulated considering the mid-time scheduling and the faults at bus and generator. Two- side adjustment methods including the load shedding and the reconfiguration are coordinated for reducing the fault effects. To address the formulated non-convex problem, the travel equality constraint and fractional energy efficiency operation indicator (EEOI) limitation are transformed into the convex forms. Then, considering the infeasibility scenario affected by faults, a further relaxation is adopted to formulate a new problem with feasibility guaranteed. Furthermore, a sufficient condition is derived to ensure that the new problem has the same optimal solution as the original one. Because of the mixed-integer nonlinear feature, an optimal algorithm based on Benders decomposition (BD) is developed to solve the new one. Due to the slow convergence caused by the time-coupled constraints, a low-complexity near-optimal algorithm based on BD (LNBD) is proposed. The results verify the effectivity of the proposed methods and algorithms.



rate research

Read More

114 - Qimin Xu , Bo Yang , Zhizhang Pan 2017
Since the limited power capacity, finite inertia, and dynamic loads make the shipboard power system (SPS) vulnerable, the automatic reconfiguration for failure recovery in SPS is an extremely significant but still challenging problem. It is not only required to operate accurately and optimally, but also to satisfy operating constraints. In this paper, we consider the reconfiguration optimization for hybrid AC/DC microgrids in all-electric ships. Firstly, the multi-zone medium voltage DC (MVDC) SPS model is presented. In this model, the DC power flow for reconfiguration and a generalized AC/DC converter are modeled for accurate reconfiguration. Secondly, since this problem is mixed integer nonlinear programming (MINLP), a hybrid method based on Newton Raphson and Biogeography based Optimization (NRBBO) is designed according to the characteristics of system, loads, and faults. This method facilitates to maximize the weighted load restoration while satisfying operating constraints. Finally, the simulation results demonstrate this method has advantages in terms of power restoration and convergence speed.
This work considers energy management in a grid-connected microgrid which consists of multiple conventional generators (CGs), renewable generators (RGs) and energy storage systems (ESSs). A two-stage optimization approach is presented to schedule the power generation, aimed at minimizing the long-term average operating cost subject to operational and service constraints. The first stage of optimization determines hourly unit commitment of the CGs via a day-ahead scheduling, and the second stage performs economic dispatch of the CGs, ESSs and energy trading via an hour-ahead scheduling. The combined solution meets the need of handling large uncertainties in the load demand and renewable generation, and provides an efficient solution under limited computational resource which meets both short-term and long-term quality-of-service requirements. The performance of the proposed strategy is evaluated by simulations based on real load demand and renewable generation data.
Proper modeling of inverter-based microgrids is crucial for accurate assessment of stability boundaries. It has been recently realized that the stability conditions for such microgrids are significantly different from those known for large- scale power systems. While detailed models are available, they are both computationally expensive and can not provide the insight into the instability mechanisms and factors. In this paper, a computationally efficient and accurate reduced-order model is proposed for modeling the inverter-based microgrids. The main factors affecting microgrid stability are analyzed using the developed reduced-order model and are shown to be unique for the microgrid-based network, which has no direct analogy to large-scale power systems. Particularly, it has been discovered that the stability limits for the conventional droop-based system (omega - P/V - Q) are determined by the ratio of inverter rating to network capacity, leading to a smaller stability region for microgrids with shorter lines. The theoretical derivation has been provided to verify the above investigation based on both the simplified and generalized network configurations. More impor- tantly, the proposed reduced-order model not only maintains the modeling accuracy but also enhances the computation efficiency. Finally, the results are verified with the detailed model via both frequency and time domain analyses.
We address the optimal transmit power allocation problem (from the sensor nodes (SNs) to the fusion center (FC)) for the decentralized detection of an unknown deterministic spatially uncorrelated signal which is being observed by a distributed wireless sensor network. We propose a novel fully distributed algorithm, in order to calculate the optimal transmit power allocation for each sensor node (SN) and the optimal number of quantization bits for the test statistic in order to match the channel capacity. The SNs send their quantized information over orthogonal uncorrelated channels to the FC which linearly combines them and makes a final decision. What makes this scheme attractive is that the SNs share with their neighbours just their individual transmit powers at the current states. As a result, the SN processing complexity is further reduced.
In this paper, a novel adaptive-gain Second Order Sliding Mode (SOSM) observer is proposed for multicell converters by considering it as a class of hybrid systems. The aim is to reduce the number of voltage sensors by estimating the capacitor voltages only from the measurement of load current. The proposed observer is proven to be robust in the presence of perturbations with emph{unknown} boundary. However, the states of the system are only partially observable in the sense of observability rank condition. Due to its switching behavior, a recent concept of $Z(T_N)$ observability is used to analysis its hybrid observability, since its observability depends upon the switching control signals. Under certain condition of the switching sequences, the voltage across each capacitor becomes observable. Simulation results and comparisons with Luenberger switched observer highlight the effectiveness and robustness of the proposed observer with respect to output measurement noise and system uncertainties (load variations).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا