Do you want to publish a course? Click here

Stability of solitons in time-modulated two-dimensional lattices

71   0   0.0 ( 0 )
 Added by Nir Dror
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop stability analysis for matter-wave solitons in a two-dimensional (2D) Bose-Einstein condensate loaded in an optical lattice (OL), to which periodic time modulation is applied, in different forms. The stability is studied by dint of the variational approximation and systematic simulations. For solitons in the semi-infinite gap, well-defined stability patterns are produced under the action of the attractive nonlinearity, clearly exhibiting the presence of resonance frequencies. The analysis is reported for several time-modulation formats, including the case of in-phase modulations of both quasi-1D sublattices, which build the 2D square-shaped OL, and setups with asynchronous modulation of the sublattices. In particular, when the modulations of two sublattices are phase-shifted by {delta}={pi}/2, the stability map is not improved, as the originally well-structured stability pattern becomes fuzzy and the stability at high modulation frequencies is considerably reduced. Mixed results are obtained for anti-phase modulations of the sublattices ({delta}={pi}), where extended stability regions are found for low modulation frequencies, but for high frequencies the stability is weakened. The analysis is also performed in the case of the repulsive nonlinearity, for solitons in the first finite bandgap. It is concluded that, even though stability regions may be found, distinct stability boundaries for the gap solitons cannot be identified clearly. Finally, the stability is also explored for vortex solitons of both the square-shaped and rhombic types (i.e., off- and on-site-centered ones).



rate research

Read More

We study a two-dimensional incoherently pumped exciton-polariton condensate described by an open-dissipative Gross-Pitaevskii equation for the polariton dynamics coupled to a rate equation for the exciton density. Adopting a hydrodynamic approach, we use multiscale expansion methods to derive several models appearing in the context of shallow water waves with viscosity. In particular, we derive a Boussinesq/Benney-Luke type equation and its far-field expansion in terms of Kadomtsev-Petviashvili-I (KP-I) equations for right- and left-going waves. From the KP-I model, we predict the existence of vorticity-free, weakly (algebraically) localized two-dimensional dark-lump solitons. We find that, in the presence of dissipation, dark lumps exhibit a lifetime three times larger than that of planar dark solitons. Direct numerical simulations show that dark lumps do exist, and their dissipative dynamics is well captured by our analytical approximation. It is also shown that lump-like and vortex-like structures can spontaneously be formed as a result of the transverse snaking instability of dark soliton stripes.
124 - Zhaopin Chen , Yongyao Li , 2020
We investigate dynamics of two-dimensional chiral solitons of semi-vortex (SV) and mixed-mode (MM) types in spin-orbit-coupled Bose-Einstein condensates with the Manakov nonlinearity, loaded in a dual-core (double-layer) trap. The system supports two novel manifestations of Josephson phenomenology: one in the form of persistent oscillations between SVs or MMs with opposite chiralities in the two cores, and another one demonstrating robust periodic switching (identity oscillations) between SV in one core and MM in the other, provided that the strength of the inter-core coupling exceeds a threshold value. Below the threshold, the system creates composite states, which are asymmetric with respect to the two cores, or suffer the collapse. Robustness of the chirality and identity oscillations against deviations from the Manakov nonlinearity is investigated too. These dynamical regimes are possible only in the nonlinear system. In the linear one, exact stationary and dynamical solutions for SVs and MMs of the Bessel type are found. They sustain Josephson self-oscillations in different modes, with no interconversion between them.
94 - R.J. Dingwall , P. Ohberg 2018
We consider the linear stability of chiral matter-wave solitons described by a density-dependent gauge theory. By studying the associated Bogoliubov-de Gennes equations both numerically and analytically, we find that the stability problem effectively reduces to that of the standard Gross-Pitaevskii equation, proving that the solitons are stable to linear perturbations. In addition, we formulate the stability problem in the framework of the Vakhitov-Kolokolov criterion and provide supplementary numerical simulations which illustrate the absence of instabilities when the soliton is initially perturbed.
We consider possibilities to control dynamics of solitons of two types, maintained by the combination of cubic attraction and spin-orbit coupling (SOC) in a two-component system, namely, semi-dipoles (SDs) and mixed modes (MMs), by making the relative strength of the cross-attraction, gamma, a function of time periodically oscillating around the critical value, gamma = 1, which is an SD/MM stability boundary in the static system. The structure of SDs is represented by the combination of a fundamental soliton in one component and localized dipole mode in the other, while MMs combine fundamental and dipole terms in each component. Systematic numerical analysis reveals a finite bistability region for the SDs and MMs around gamma = 1, which does not exist in the absence of the periodic temporal modulation (management), as well as emergence of specific instability troughs and stability tongues for the solitons of both types, which may be explained as manifestations of resonances between the time-periodic modulation and intrinsic modes of the solitons. The system can be implemented in Bose-Einstein condensates, and emulated in nonlinear optical waveguides.
It was recently found that, under the action of the spin-orbit coupling (SOC) and Zeeman splitting (ZS), binary BEC with intrinsic cubic nonlinearity supports families of gap solitons, provided that the kinetic energy is negligible in comparison with the SOC and ZS terms. We demonstrate that, also under the action of SOC and ZS, a similar setting may be introduced for BEC with two components representing different atomic states, resonantly coupled by microwave radiation, while the Poisson equation accounts for the feedback of the two-component atomic wave function onto the radiation. The microwave-mediated interaction induces an effective nonlinear trapping potential, which strongly affects the purport of the linear spectrum in this system. As a result, families of both gap and embedded solitons (those overlapping with the continuous spectrum) are found, being chiefly stable. The shape of the solitons features exact or broken skew symmetry. In addition to fundamental solitons (whose shape may or may not include a node), a family of dipole solitons is constructed too, which are even more stable than their fundamental counterparts. A nontrivial stability area is identified for moving solitons in the present system, which lacks Galilean invariance. Colliding solitons merge into a single one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا