No Arabic abstract
We describe a method to tune, in-situ, between transverse and longitudinal light-matter coupling in a hybrid circuit-QED device composed of an electron spin degree of freedom coupled to a microwave transmission line cavity. Our approach relies on periodic modulation of the coupling itself, such that in a certain frame the interaction is both amplified and either transverse, or, by modulating at two frequencies, longitudinal. The former realizes an effective simulation of certain aspects of the ultra-strong coupling regime, while the latter allows one to implement a longitudinal readout scheme even when the intrinsic Hamiltonian is transverse, and the individual spin or cavity frequencies cannot be changed. We analyze the fidelity of using such a scheme to measure the state of the electron spin degree of freedom, and argue that the longitudinal readout scheme can operate in regimes where the traditional dispersive approach fails.
Photonic states of superconducting microwave cavities controlled by transmon ancillas provide a platform for encoding and manipulating quantum information. A key challenge in scaling up the platform is the requirement to communicate on demand the information between the cavities. It has been recently demonstrated that a tunable bilinear interaction between two cavities can be realized by coupling them to a bichromatically-driven transmon ancilla, which allows swapping and interfering the multi-photon states of the cavities [Gao et al., Phys. Rev. X 8, 021073(2018)]. Here, we explore both theoretically and experimentally the regime of relatively strong drives on the ancilla needed to achieve fast SWAP gates but which can also lead to undesired non-perturbative effects that lower the SWAP fidelity. We develop a theoretical formalism based on linear response theory that allows one to calculate the rate of ancilla-induced interaction, decay and frequency shift of the cavities in terms of a susceptibility matrix. We treat the drives non-perturbatively using Floquet theory, and find that the interference of the two drives can strongly alter the system dynamics even in the regime where the rotating wave approximation applies. We identify two major sources of infidelity due to ancilla decoherence. i) Ancilla dissipation and dephasing leads to incoherent hopping among Floquet states which occurs even when the ancilla is at zero temperature, resulting in a sudden change of the SWAP rate. ii) The cavities inherit finite decay from the relatively lossy ancilla through the inverse Purcell effect; the effect can be enhanced when the drive-induced AC Stark shift pushes certain ancilla transition frequencies to the vicinity of the cavity frequencies. The theoretical predictions agree quantitatively with the experimental results, paving the way for using the theory to design future experiments.
Superconducting electrical circuits can be used to study the physics of cavity quantum electrodynamics (QED) in new regimes, therefore realizing circuit QED. For quantum information processing and quantum optics, an interesting regime of circuit QED is the dispersive regime, where the detuning between the qubit transition frequency and the resonator frequency is much larger than the interaction strength. In this paper, we investigate how non-linear corrections to the dispersive regime affect the measurement process. We find that in the presence of pure qubit dephasing, photon population of the resonator used for the measurement of the qubit act as an effective heat bath, inducing incoherent relaxation and excitation of the qubit. Measurement thus induces both dephasing and mixing of the qubit, something that can reduce the quantum non-demolition aspect of the readout. Using quantum trajectory theory, we show that this heat bath can induce quantum jumps in the qubit state and reduce the achievable signal-to-noise ratio of a homodyne measurement of the voltage.
Superconducting quantum circuits possess the ingredients for quantum information processing and for developing on-chip microwave quantum optics. From the initial manipulation of few-level superconducting systems (qubits) to their strong coupling to microwave resonators, the time has come to consider the generation and characterization of propagating quantum microwaves. In this paper, we design a key ingredient that will prove essential in the general frame: a swtichable coupling between qubit(s) and transmission line(s) that can work in the ultrastrong coupling regime, where the coupling strength approaches the qubit transition frequency. We propose several setups where two or more loops of Josephson junctions are directly connected to a closed (cavity) or open transmission line. We demonstrate that the circuit induces a coupling that can be modulated in strength and type. Given recent studies showing the accessibility to the ultrastrong regime, we expect our ideas to have an immediate impact in ongoing experiments.
In this experiment, we couple a superconducting Transmon qubit to a high-impedance $645 Omega$ microwave resonator. Doing so leads to a large qubit-resonator coupling rate $g$, measured through a large vacuum Rabi splitting of $2gsimeq 910$ MHz. The coupling is a significant fraction of the qubit and resonator oscillation frequencies $omega$, placing our system close to the ultra-strong coupling regime ($bar{g}=g/omega=0.071$ on resonance). Combining this setup with a vacuum-gap Transmon architecture shows the potential of reaching deep into the ultra-strong coupling $bar{g} sim 0.45$ with Transmon qubits.
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded SQUID. The anharmonic spectrum of the qubit-resonator system and the selection rules imposed by the global parity symmetry allow us to activate well controlled two-body quantum gates via AC-pulses applied to the SQUID. We show that our proposal has the same simulation time for any number of spin-1 interacting particles. This scheme may be implemented within the state-of-the-art circuit QED in the ultrastrong coupling regime.