Do you want to publish a course? Click here

Pulsar Rotation Measures and Large-scale Magnetic Field Reversals in the Galactic Disk

114   0   0.0 ( 0 )
 Added by JinLin Han
 Publication date 2017
  fields Physics
and research's language is English
 Authors J. L. Han




Ask ChatGPT about the research

We present the measurements of Faraday rotation for 477 pulsars observed by the Parkes 64-m radio telescope and the Green Bank 100-m radio telescope. Using these results along with previous measurements for pulsars and extra-galactic sources, we analyse the structure of the large-scale magnetic field in the Galactic disk. Comparison of rotation measures of pulsars in the disk at different distances as well as with rotation measures of background radio sources beyond the disk reveals large-scale reversals of the field directions between spiral arms and interarm regions. We develop a model for the disk magnetic field, which can reproduce not only these reversals but also the distribution of observed rotation measures of background sources.



rate research

Read More

We search for observational signatures of magnetic helicity in data from all-sky radio polarization surveys of the Milky Way Galaxy. Such a detection would help confirm the dynamo origin of the field and may provide new observational constraints for its shape. We compare our observational results to simulated observations for both a simple helical field, and for a more complex field that comes from a solution to the dynamo equation. Our simulated observations show that the large-scale helicity of a magnetic field is reflected in the large-scale structure of the fractional polarization derived from the observed synchrotron radiation and Faraday depth of the diffuse Galactic synchrotron emission. Comparing the models with the observations provides evidence for the presence of a quadrupolar magnetic field with a vertical component that is pointing away from the observer in both hemispheres of the Milky Way Galaxy. Since there is no reason to believe that the Galactic magnetic field is unusual when compared to other galaxies, this result provides further support for the dynamo origin of large-scale magnetic fields in galaxies.
Faraday rotation provides a valuable tracer of magnetic fields in the interstellar medium; catalogs of Faraday rotation measures provide key observations for studies of the Galactic magnetic field. We present a new catalog of rotation measures derived from the Canadian Galactic Plane Survey, covering a large region of the Galactic plane spanning 52 deg < l < 192 deg, -3 deg < b < 5 deg, along with northern and southern latitude extensions around l ~ 105 deg. We have derived rotation measures for 2234 sources (4 of which are known pulsars), 75% of which have no previous measurements, over an area of approximately 1300 square degrees. These new rotation measures increase the measurement density for this region of the Galactic plane by a factor of two.
NGC 4631 is an interacting galaxy which exhibits one of the largest gaseous halos observed among edge-on galaxies. We aim to examine the synchrotron and polarization properties of its disk and halo emission with new radio continuum data. Radio continuum observations of NGC 4631 were performed with the Karl G. Jansky Very Large Array at C-band (5.99 GHz) in the C & D array configurations, and at L-band (1.57 GHz) in the B, C, & D array configurations. The Rotation Measure Synthesis algorithm was utilized to derive the polarization properties. We detected linearly polarized emission at C-band and L-band. The magnetic field in the halo is characterized by strong vertical components above and below the central region of the galaxy. The magnetic field in the disk is only clearly seen in the eastern side of NGC 4631, where it is parallel to the plane of the major axis of the galaxy. We detected for the first time a large-scale, smooth Faraday depth pattern in a halo of an external spiral galaxy, which implies the existence of a regular (coherent) magnetic field. A quasi-periodic pattern in Faraday depth with field reversals was found in the northern halo of the galaxy. The field reversals in the northern halo of NGC 4631, together with the observed polarization angles, indicate giant magnetic ropes (GMRs) with alternating directions. To our knowledge, this is the first time such reversals are observed in an external galaxy.
We have determined 194 Faraday rotation measures (RMs) of polarized extragalactic radio sources using new, multi-channel polarization observations at frequencies around 1.4 GHz from the Very Large Array (VLA) in the Galactic plane at $17^circ leq l leq 63^circ$ and $205^circ leq l leq 253^circ$. This catalog fills in gaps in the RM coverage of the Galactic plane between the Canadian Galactic Plane Survey and Southern Galactic Plane Survey. Using this catalog we have tested the validity of recently-proposed axisymmetric and bisymmetric models of the large-scale (or regular) Galactic magnetic field, and found that of the existing models we tested, an axisymmetric spiral model with reversals occurring in rings (as opposed to along spiral arms) best matched our observations. Building on this, we have performed our own modeling, using RMs from both extragalactic sources and pulsars. By developing independent models for the magnetic field in the outer and inner Galaxy, we conclude that in the inner Galaxy, the magnetic field closely follows the spiral arms, while in the outer Galaxy, the field is consistent with being purely azimuthal.Furthermore, the models contain no reversals in the outer Galaxy, and together seem to suggest the existence of a single reversed region that spirals out from the Galactic center.
This study is based on high quality astrometric and spectroscopic data from the most recent releases by Gaia and APOGEE. We select $58,882$ thin and thick disk red giants, in the Galactocentric (cylindrical) distance range $5 < R < 13$~kpc and within $|z| < 3$~kpc, for which full chemo-kinematical information is available. Radial chemical gradients, $partial rm{[M/H]} / partial rm{R}$, and rotational velocity-metallicity correlations, $partial V_phi / partial rm{[M/H]}$, are re-derived firmly uncovering that the thick disk velocity-metallicity correlation maintains its positiveness over the $8$~kpc range explored. This observational result is important as it sets experimental constraints on recent theoretical studies on the formation and evolution of the Milky Way disk and on cosmological models of Galaxy formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا