Do you want to publish a course? Click here

Solutions of the Braid Equation with set-type square

48   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

For a family of height one orders $(X,le)$ and each non-degenerate solution $r_0colon Xtimes Xlongrightarrow Xtimes X$ of the set-theoretic braid equation on $X$ satisfying suitable conditions, we obtain all the non-degenerate solutions of the braid equation on the incidence coalgebra of $(X,le)$ that extend $r_0$.



rate research

Read More

In this paper we begin the study of set-theoretic type solution of the braid equation. Our theory includes set-theoretical solutions as basic examples. We show that the relationships between set-theoretical solutions, q-cycle sets, q-braces, skew-braces, matched pairs of groups and invertible $1$-cocycles remain valid in our setting.
In this paper we discuss and characterize several set-theoretic solutions of the Yang-Baxter equation obtained using skew lattices, an algebraic structure that has not yet been related to the Yang-Baxter equation. Such solutions are degenerate in general, and thus different from solutions obtained from braces and other algebraic structures. Our main result concerns a description of a set-theoretic solution of the Yang-Baxter equation, obtained from an arbitrary skew lattice. We also provide a construction of a cancellative and distributive skew lattice on a given family of pairwise disjoint sets.
We study Artin-Tits braid groups $mathbb{B}_W$ of type ADE via the action of $mathbb{B}_W$ on the homotopy category $mathcal{K}$ of graded projective zigzag modules (which categorifies the action of the Weyl group $W$ on the root lattice). Following Brav-Thomas, we define a metric on $mathbb{B}_W$ induced by the canonical $t$-structure on $mathcal{K}$, and prove that this metric on $mathbb{B}_W$ agrees with the word-length metric in the canonical generators of the standard positive monoid $mathbb{B}_W^+$ of the braid group. We also define, for each choice of a Coxeter element $c$ in $W$, a baric structure on $mathcal{K}$. We use these baric structures to define metrics on the braid group, and we identify these metrics with the word-length metrics in the Birman-Ko-Lee/Bessis dual generators of the associated dual positive monoid $mathbb{B}_{W.c}^vee$. As consequences, we give new proofs that the standard and dual positive monoids inject into the group, give linear-algebraic solutions to the membership problem in the standard and dual positive monoids, and provide new proofs of the faithfulness of the action of $mathbb{B}_W$ on $mathcal{K}$. Finally, we use the compatibility of the baric and $t$-structures on $mathcal{K}$ to prove a conjecture of Digne and Gobet regarding the canonical word-length of the dual simple generators of ADE braid groups.
103 - F. Cedo , E. Jespers , J. Okninski 2020
To every involutive non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation on a finite set $X$ there is a naturally associated finite solvable permutation group ${mathcal G}(X,r)$ acting on $X$. We prove that every primitive permutation group of this type is of prime order $p$. Moreover, $(X,r)$ is then a so called permutation solution determined by a cycle of length $p$. This solves a problem recently asked by A. Ballester-Bolinches. The result opens a new perspective on a possible approach to the classification problem of all involutive non-degenerate set-theoretic solutions.
Path algebras are a convenient way of describing decompositions of tensor powers of an object in a tensor category. If the category is braided, one obtains representations of the braid groups $B_n$ for all $nin N$. We say that such representations are rigid if they are determined by the path algebra and the representations of $B_2$. We show that besides the known classical cases also the braid representations for the path algebra for the 7-dimensional representation of $G_2$ satisfies the rigidity condition, provided $B_3$ generates $End(V^{otimes 3})$. We obtain a complete classification of ribbon tensor categories with the fusion rules of $g(G_2)$ if this condition is satisfied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا