Do you want to publish a course? Click here

The Infrared Luminosity Function of AKARI 90$mu$m Galaxies in the Local Universe

370   0   0.0 ( 0 )
 Added by Ece Kilerci Eser
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present infrared galaxy LFs at redshifts redshifts of $z leq 0.3$ from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140 and 160 micron) with 10 times better sensitivity than its precursor IRAS. Availability of 160 micron filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR13), 6-degree Field Galaxy Survey (6dFGS) and the 2MASS Redshift Survey (2MRS), we created a sample of 15,638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI -SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is $Omega_{IR}=$ 1.19$pm$0.05 $times 10^{8}$ L$_{odot}$ Mpc$^{-3}$. The contributions from luminous infrared galaxies and ultra luminous infrared galaxies to IR are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all sky survey in far-infrared wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.



rate research

Read More

We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point source catalogue containing a large number of infrared (IR) sources distributed over the wide (5.4 sq. deg.) field, we incorporated the spectroscopic redshift data for about 1790 selected targets obtained by optical follow-up surveys with MMT/Hectospec and WIYN/Hydra. The AKARI continuous 2 to 24 micron wavelength coverage as well as photometric data from optical u band to NIR H-band with the spectroscopic redshifts for our sample galaxies enable us to derive accurate spectral energy distributions (SEDs) in the mid-infrared. We carried out SED fit analysis and employed 1/Vmax method to derive the MIR (8, 12, and 15 micron rest-frame) luminosity functions. We fit our 8 micron LFs to the double power-law with the power index of alpha= 1.53 and beta= 2.85 at the break luminosity. We made extensive comparisons with various MIR LFs from several literatures. Our results for local galaxies from the NEP region are generally consistent with other works for different fields over wide luminosity ranges. The comparisons with the results from the NEP-Deep data as well as other LFs imply the luminosity evolution from higher redshifts towards the present epoch.
The aim of this work is to characterize physical properties of Ultra Luminous Infrared Galaxies (ULIRGs) and Luminous Infrared Galaxies (LIRGs) detected in the far-infrared (FIR) 90um band in the AKARI Deep Field-South (ADF-S) survey. In particular, we want to estimate the AGN contribution to the [U]LIRGs infrared emission and which types of AGNs are related to their activity. We examined 69 galaxies at z>0.05 detected at 90um by the AKARI satellite in the ADF-S, with optical counterparts and spectral coverage from the ultraviolet to the FIR. We used two independent spectral energy distribution fitting codes: one fitting the SED from FIR to FUV (CIGALE) and gray-body + power spectrum fit for the infrared part of the spectra (CMCIRSED) in order to identify a subsample of [U]LIRGs, and to estimate their properties. Based on the CIGALE SED fitting, we have found that [U]LIRGs selected at the 90um AKARI band compose ~56% of our sample (we found 17 ULIRGs and 22 LIRGs, spanning over the redshift range 0.06<z<1.23). Their physical parameters, such as stellar mass, star formation rate (SFR), and specific SFR are consistent with the ones found for other samples selected at IR wavelengths. We have detected a significant AGN contribution to the MIR luminosity for 63% of LIRGs and ULIRGs. Our LIRGs contain Type 1, Type 2, and intermediate types of AGN, whereas for ULIRGs, a majority (more than 50%) of AGN emission originates from Type 2 AGNs. The temperature--luminosity and temperature--mass relations for the dust component of ADF--S LIRGs and ULIRGs indicate that these relations are shaped by the dust mass and not by the increased dust heating. We conclude that LIRGs contain Type 1, Type 2, and intermediate types of AGNs, with an AGN contribution to the MIR emission at the median level of 13+/-3%, whereas the majority of ULIRGs contain Type 2 AGNs, with a median AGN fraction equal to 19+/-8%.
151 - H. Inami , L. Armus , H. Matsuhara 2018
We present AKARI 2.5-5um spectra of 145 local luminous infrared galaxies in the Great Observatories All-sky LIRG Survey. In all of the spectra, we measure the line fluxes and EQWs of the polycyclic aromatic hydrocarbon (PAH) at 3.3um and the hydrogen recombination line Br-alpha, with apertures matched to the slit sizes of the Spitzer spectrograph and with an aperture covering ~95% of the total flux in the AKARI 2D spectra. The star formation rates (SFRs) derived from Br-alpha measured in the latter aperture agree well with SFRs(LIR), when the dust extinction correction is adopted based on the 9.7um absorption feature. Together with the Spitzer spectra, we are able to compare the 3.3 and 6.2um PAH features, the two most commonly used near/mid-IR indicators of starburst (SB) or active galactic nucleus (AGN) dominated galaxies. We find that the 3.3 and 6.2um PAH EQWs do not follow a linear correlation and at least 1/3 of galaxies classified as AGN-dominated using 3.3um PAH are classified as starbursts based on 6.2um PAH. These galaxies have a bluer continuum slope than galaxies that are indicated to be SB-dominated by both PAH features. The bluer continuum emission suggests that their continuum is dominated by stellar emission rather than hot dust. We also find that the median Spitzer spectra of these sources are remarkably similar to the pure SB-dominated sources indicated by high PAH EQWs in both 3.3 and 6.2um. We propose a revised SB/AGN diagnostic diagram using 2-5um data. We also use the AKARI and Spitzer spectra to examine the performance of our new diagnostics and to estimate 3.3um PAH fluxes using the JWST photometric bands in 0<z<5. Of the known PAH features and mid-IR high ionization emission lines used as SB/AGN indicators, only the 3.3um PAH feature is observable with JWST at z>3.5, because the rest of the features at longer wavelengths fall outside the JWST wavelength coverage.
We present a method of selection of 24~$mu$m galaxies from the AKARI North Ecliptic Pole (NEP) Deep Field down to $150 mbox{ }mu$Jy and measurements of their two-point correlation function. We aim to associate various 24 $mu$m selected galaxy populations with present day galaxies and to investigate the impact of their environment on the direction of their subsequent evolution. We discuss using of Support Vector Machines (SVM) algorithm applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy higher than 80%. The photometric redshift information, obtained through the CIGALE code, is used to explore the redshift dependence of the correlation function parameter ($r_{0}$) as well as the linear bias evolution. This parameter relates galaxy distribution to the one of the underlying dark matter. We connect the investigated sources to their potential local descendants through a simplified model of the clustering evolution without interactions. We observe two different populations of star-forming galaxies, at $z_{med}sim 0.25$, $z_{med}sim 0.9$. Measurements of total infrared luminosities ($L_{TIR}$) show that the sample at $z_{med}sim 0.25$ is composed mostly of local star-forming galaxies, while the sample at $z_{med}sim0.9$ is composed of luminous infrared galaxies (LIRGs) with $L_{TIR}sim 10^{11.62}L_{odot}$. We find that dark halo mass is not necessarily correlated with the $L_{TIR}$: for subsamples with $L_{TIR}= 10^{11.15} L_{odot}$ at $z_{med}sim 0.7$ we observe a higher clustering length ($r_{0}=6.21pm0.78$ $[h^{-1} mbox{Mpc}]$) than for a subsample with mean $L_{TIR}=10^{11.84} L_{odot}$ at $z_{med}sim1.1$ ($r_{0}=5.86pm0.69$ $h^{-1} mbox{Mpc}$). We find that galaxies at $z_{med}sim 0.9$ can be ancestors of present day $L_{*}$ early type galaxies, which exhibit a very high $r_{0}sim 8$~$h^{-1} mbox{Mpc}$.
We explore the relationships between the 3.3 {mu}m polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, using the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the 9-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at $E lesssim 10$ keV. These X-ray spectra provide measurements of the neutral hydrogen column density ($N_{rm H}$) towards the AGNs. We use the 3.3 {mu}m PAH luminosity ($L_{rm 3.3{mu}m}$) as a proxy for star formation activity and hard X-ray luminosity ($L_{rm 14-195keV}$) as an indicator of the AGN activity. We search for possible difference of star-formation activity between type 1 (un-absorbed) and type 2 (absorbed) AGNs. We have made several statistical analyses taking the upper-limits of the PAH lines into account utilizing survival analysis methods. The results of our $log(L_{rm 14-195keV})$ versus $log(L_{rm 3.3{mu}m})$ regression shows a positive correlation and the slope for the type 1/unobscured AGNs is steeper than that of type 2/obscured AGNs at a $3sigma$ level. Also our analysis show that the circum-nuclear star-formation is more enhanced in type 2/absorbed AGNs than type 1/un-absorbed AGNs for low X-ray luminosity/low Eddington ratio AGNs, while there is no significant dependence of star-formation activities on the AGN type in the high X-ray luminosities/Eddington ratios.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا