Finite GUE distribution with cut-off at a shock


Abstract in English

We consider the totally asymmetric simple exclusion process with initial conditions generating a shock. The fluctuations of particle positions are asymptotically governed by the randomness around the two characteristic lines joining at the shock. Unlike in previous papers, we describe the correlation in space-time emph{without} employing the mapping to the last passage percolation, which fails to exists already for the partially asymmetric model. We then consider a special case, where the asymptotic distribution is a cut-off of the distribution of the largest eigenvalue of a finite GUE matrix. Finally we discuss the strength of the probabilistic and physically motivated approach and compare it with the mathematical difficulties of a direct computation.

Download