No Arabic abstract
We define virtual immersions, as a generalization of isometric immersions in a pseudo-Riemannian vector space. We show that virtual immersions possess a second fundamental form, which is in general not symmetric. We prove that a manifold admits a virtual immersion with skew symmetric second fundamental form, if and only if it is a symmetric space, and in this case the virtual immersion is essentially unique.
We prove that the geodesic equations of all Sobolev metrics of fractional order one and higher on spaces of diffeomorphisms and, more generally, immersions are locally well posed. This result builds on the recently established real analytic dependence of fractional Laplacians on the underlying Riemannian metric. It extends several previous results and applies to a wide range of variational partial differential equations, including the well-known Euler-Arnold equations on diffeomorphism groups as well as the geodesic equations on spaces of manifold-valued curves and surfaces.
Using a bigraded differential complex depending on the CR and pseudohermitian structure, we give a characterization of three-dimensional strongly pseudoconvex pseudo-hermitian CR-manifolds isometrically immersed in Euclidean space $mathbb{R}^n$ in terms of an integral representation of Weierstrass type. Restricting to the case of immersions in $mathbb{R}^4$, we study harmonicity conditions for such immersions and give a complete classification of CR-pluriharmonic immersions.
We consider horofunction compactifications of symmetric spaces with respect to invariant Finsler metrics. We show that any (generalized) Satake compactification can be realized as a horofunction compactification with respect to a polyhedral Finsler metric.
We explain how the Transference Principles from Diophantine approximation can be interpreted in terms of geometry of the locally symmetric spaces $T_n=SO(n) backslash SL(n,R) /SL(n,Z)$ with $n>1$, and how, via this dictionary, they become transparent geometric remarks and can be easily proved. Indeed, a finite family of linear forms is naturally identified to a locally geodesic ray in a space $T_n$ and the way this family is approximated is reflected by the heights at which the ray rises in the cuspidal end. The only difference between the two types of approximation appearing in a Transference Theorem is that the height is measured with respect to different rays in $W$, a Weyl chamber in $T_n$. Thus the Transference Theorem is equivalent to a relation between the Busemann functions of two rays in $W$. This relation is easy to establish on $W$, because restricted to it the two Busemann functions become two linear forms. Since $T_n$ is at finite Hausdorff distance from $W$, the same relation is satisfied up to a bounded perturbation on the whole of $T_n$.
We prove a rigidity theorem that shows that, under many circumstances, quasi-isometric embeddings of equal rank, higher rank symmetric spaces are close to isometric embeddings. We also produce some surprising examples of quasi-isometric embeddings of higher rank symmetric spaces. In particular, we produce embeddings of $SL(n,mathbb R)$ into $Sp(2(n-1),mathbb R)$ when no isometric embeddings exist. A key ingredient in our proofs of rigidity results is a direct generalization of the Mostow-Morse Lemma in higher rank. Typically this lemma is replaced by the quasi-flat theorem which says that maximal quasi-flat is within bounded distance of a finite union of flats. We improve this by showing that the quasi-flat is in fact flat off of a subset of codimension $2$.