FPS-SFT: A Multi-dimensional Sparse Fourier Transform Based on the Fourier Projection-slice Theorem


Abstract in English

We propose a multi-dimensional (M-D) sparse Fourier transform inspired by the idea of the Fourier projection-slice theorem, called FPS-SFT. FPS-SFT extracts samples along lines (1-dimensional slices from an M-D data cube), which are parameterized by random slopes and offsets. The discrete Fourier transform (DFT) along those lines represents projections of M-D DFT of the M-D data onto those lines. The M-D sinusoids that are contained in the signal can be reconstructed from the DFT along lines with a low sample and computational complexity provided that the signal is sparse in the frequency domain and the lines are appropriately designed. The performance of FPS-SFT is demonstrated both theoretically and numerically. A sparse image reconstruction application is illustrated, which shows the capability of the FPS-SFT in solving practical problems.

Download